Еще о свойствах СТО
Еще о свойствах СТО
Эквивалентность инвариантной массы и энергии покоя. Знаменитая формула Эйнштейна. Вспомним обычные определения энергии и импульса из школьного курса, которые используются в нерелятивистской механике Ньютона. Энергия обычно разделяется на потенциальную и кинетическую. Потенциальная определяется высотой тела над поверхностью Земли. Ее исключим из рассмотрения, предполагая, что нет гравитационного поля Земли. Кинетическая энергия определяется массой и скоростью тела:
Импульс определяется простой формулой p = mv, m – инвариантная относительно преобразований инерциальная масса тела, масса покоя. Как изменятся эти величины при переходе к другой инерциальной системе? В рамках преобразований Галилея нужно лишь заменить скорость тела v на v? = v + V, где V – скорость движения одной системы относительно другой.
В специальной теории относительности мы имеем дело с релятивистской механикой. В ее рамках энергия движущегося тела и его импульс выражаются формулами:
Как релятивистские энергия и импульс преобразуются при переходе от одной инерциальной системы к другой? Ответ простой: с помощью преобразований Лоренца. Релятивистские энергию и компоненты импульса (для сохранения размерности – ср) можно мыслить, как компоненты единого 4-х вектора в пространстве Минковского, который называют вектором энергии-импульса. Строим квадрат длины этого 4-мерного вектора точно так же, как был построен квадрат интервала между событиями. Как и интервал, эта величина инвариантна относительно поворотов Лоренца и всегда имеет значение:
E 2 – (сp) 2 = (mc 2) 2.
Знак минус и здесь отражает тот факт, что пространство Минковского – псевдоевклидово. Легко видеть, если частица покоится и p = 0, то ее полная энергия выражается знаменитой формулой: E = mc2. Это согласуется с релятивистским выражением для энергии, если там положить v = 0, и приводит к выводу, что вся масса покоя тела может быть превращена в энергию, а энергия может обращаться в массу покоя.
Представим релятивистские энергию и импульс для малых скоростей v: они переходят в нерелятивистские E = mc2 + Ek (где второе слагаемое – обычная кинетическая энергия, она определена выше) и p = mv. Как видим, здесь нерелятивистская энергия отличается от кинетической энергии Ньютона на величину, которую мы уже назвали энергией покоя. То есть в СТО у массивных частиц состояний с нулевой энергией не бывает.
Кроме этих выводов, сделаем еще один: в СТО естественным образом описываются частицы с нулевой массой покоя m = 0, такие как фотон, для них E2 = (сp)2. Очевидно, что в пространстве Минковкого они распространяются со скоростью света. Действительно, длина 4-вектора энергии-импульса для них равна нулю, т. е. их мировые линии лежат на световом конусе.
«Утяжеление релятивистской массы». Иногда в литературе, особенно часто – в популярной, встречается понятие «релятивисткой массы». Откуда оно взялось? В выражениях для релятивистских энергии и импульса инвариантную массу покоя можно заменить выражением:
Эта величина и называется релятивистской массой. Тогда релятивистская энергия приобретает форму формулы Эйнштейна E = m?c2, а релятивистский импульс форму обычного импульса p = m?v. Ясно, что с возрастанием скорости v, величина m? увеличивается, а при v = c обращается в бесконечность. Возможно, это выглядит как яркий пример в популярной литературе. Но исследователи, как правило, этой величиной не оперируют, чтобы не создавать путаницы, ведь релятивистские энергия и импульс ведут себя точно так же. Действительно, они растут с увеличением скорости. Но для реальных тел ни энергия, ни импульс не могут достигать бесконечных значений. Это значит, что объекты с ненулевой массой покоя не могут достичь скорости света, а их траектория всегда находится внутри светового конуса. Куда удобнее использовать массу покоя, которая является инвариантной величиной.
Данный текст является ознакомительным фрагментом.