Глава 8 Черные дыры

We use cookies. Read the Privacy and Cookie Policy

Глава 8

Черные дыры

Горизонт стремительно загибался всё круче и круче, и казалось, что все мы находимся на дне колоссального кувшина.

Аркадий Стругацкий, Борис Стругацкий «Понедельник начинается в субботу»

Темные звезды Мичелла-Лапласа

Как ни странно, чтобы начать рассказ о черных дырах, которые предсказала общая теория относительности, мы снова должны вернуться к временам Ньютона. Как мы уже обсуждали, и сам Ньютон, и его современники имели все основания полагать, что световые лучи отклоняются тяготеющими телами, то есть свет притягивается точно так же, как обычные материальные частицы. Этого было вполне достаточно, чтобы построить модель невидимой (темной, черной) звезды. У такой звезды сила притяжения на поверхности, вычисленная в соответствии с законом всемирного тяготения, должна быть такой, что свет не может покинуть ее. Поскольку это было время научного подъема в просвещенном обществе, то, видимо, многие задумывались об этой проблеме. Сейчас известно, что в 1783 году свои соображения по этому поводу представил английский священник и один из основателей научной сейсмологии Джон Мичелл (1724–1793). Независимо, но позднее, аналогичные выводы были сделаны французским математиком, физиком и астрономом Пьером Лапласом (1749–1827). Аргументацию Лапласа мы и приводим.

Результаты были представлены в книге «Изложение системы мира», вышедшей в 1795 году. Утверждение Лапласа звучало следующим образом: «Светящаяся звезда с плотностью, равной плотности Земли, и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми». Доказательство этого утверждения он опубликовал позднее. Расчет был основан на понятии второй космической скорости на поверхности небесного тела. Это та скорость, которую надо придать объекту, чтобы он, поборов тяготение, покинул небесное тело. Если начальная скорость меньше второй космической, то силы тяготения затормозят и остановят движение объекта. Для примера: вторая космическая скорость на поверхности Земли равна 11 км/с, на поверхности Юпитера – 61, на поверхности Солнца – 620. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. А поскольку скорость света была известна Лапласу, то ему оставалось смоделировать небесное тело, для которого эта скорость оказалась бы второй космической.

Данный текст является ознакомительным фрагментом.