3. Построение уравнений Эйнштейна
3. Построение уравнений Эйнштейна
Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства-времени. При этом пространство-время искривляется под воздействием материи, которая, в свою очередь, движется в этом искривленном собой пространстве-времени. Это и есть логическая основа для построения уравнений общей теории относительности. Но как их построить правильно?
Логика очевидна: нужно связать тензор энергии-импульса материи с кривизной пространства-времени. Самый простой и очевидный способ: отнести Tab в правую часть уравнений, а левую определить как некую комбинацию компонент тензора кривизны. Но как это сделать? Дело в том, что все уравнения вместе (гравитационные уравнения и уравнения для материи) должны быть совместны, иначе не будет существовать решений. Но как мы уже отметили, анализ уравнений материи в искривленном пространстве-времени приводит к выводу, что тензор энергии-импульса материи должен удовлетворять закону сохранения (непрерывности). Но тогда, чтобы все уравнения были совместны, нужно найти такую комбинацию из величин, связанных с кривизной, и которую мы собираемся написать в левой части уравнений, чтобы она тождественно удовлетворяла такому же закону сохранения. Такая комбинация была найдена – это так называемый тензор Эйнштейна Gab, построенный из компонент тензора Римана, а в конечном итоге зависящий от метрического тензора. Тогда уравнения для гравитационного поля записываются в виде:
Gab = ?Tab.
Здесь ? – постоянная Эйнштейна, которая выражается через ньютонову гравитационную постоянную G и скорость света c: ? = 8?G/c4. Эти уравнения были построены и представлены Эйнштейном в работах 1915 и 1916 годов на основании сображений, изложенных выше. Практически одновременно они были представлены немецкими математиком Давидом Гильбертом.
Данный текст является ознакомительным фрагментом.