Планетезимали Ф. Мультона и Т. Чемберлина
Планетезимали Ф. Мультона и Т. Чемберлина
В 1905 году американский астроном профессор Ф. Мультон вместе с коллегой, тоже профессором Чикагского университета, только геологом, Т. Чемберлином опубликовали новую гипотезу происхождения солнечной системы. Они предположили, что некогда наше Солнце, еще не имевшее планетной свиты, встретилось с другой одинокой звездой. Чужое светило прошло настолько близко от нашего, что из недр Солнца поднялась громадная приливная волна раскаленных сжатых газов. Она устремилась вслед за пришелицей. Впоследствии из этой материи образовались большие планеты.
С противоположной стороны Солнца, где приливные силы были значительно меньше, извержения были слабее. Массы газа, удержанные полем притяжения Солнца, не смогли улететь далеко и образовали близко расположенные малые планеты земной группы.
Механизм образования планет из раскаленного солнечного вещества Ф. Мультон и Т. Чемберлин видели таким. Сначала путем конденсации из клубов газа образовались бесчисленные тела небольших размеров, — создатели новой гипотезы назвали их «планетезималями». Планетезимали быстро охладились и затвердели. Часть из них, отделившись от первоначальной компании, ушла в самостоятельный полет по собственным орбитам. Остальные, сохранив привязанности, остались в составе больших роев, которые постепенно под действием сил тяготения собрались в твердые ядра — зародыши будущих планет. Ядра облетали Солнце в гуще образовавшихся планетезималей по довольно вытянутым орбитам. Это означало, что скорости их на одних участках пути были больше, на других меньше. Пролетая через безбрежное море планетезималей, ядра собирали их и увеличивались в размерах. И конечно, каждый захваченный обломок либо притормаживал ядро, если оно двигалось быстрее его, либо, наоборот, подгонял, если ядро двигалось медленнее обломка. В соответствии с выравниванием скоростей менялись и формы орбит ядер. Они становились менее вытянутыми.
Гипотеза Мультона — Чемберлина устраняла трудность в объяснении распределения моментов количества движения. Кроме того, прилетевшая со стороны звезда связывала как-то наше Солнце с остальным звездным миром и включала его в историю общей жизни Галактики. Но были в ней и определенные недостатки. Прежде всего трудно было понять, какие силы, кроме притяжения, помогли выбросу массы газов из Солнца. Может быть, удастся приспособить к этой роли световое давление, открытое русским физиком П. Лебедевым?
По мнению большинства специалистов, силы лучистого отталкивания вполне способны конкурировать с ньютоновским тяготением. Однако после расчетов надежды, возрожденные тонким экспериментом П. Лебедева, сменились разочарованием. Предположения были правильны, но… только для тел микроскопических размеров. Астрономы подсчитали, что всего огромного потока излучения Солнца едва хватит на то, чтобы удержать против сил тяготения массу астероида диаметром едва ли в 15 километров.
Необъяснимо было и предположение Ф. Мультона и Т. Чемберлина, что газовые массы вылетели из Солнца не сплошной непрерывной струей, а отдельными клубами, как бы в результате серии взрывов. Были и другие критические замечания в адрес гипотезы американских профессоров.
Кое-кто начинал понимать, что объяснить столь грандиозное и сложное явление, как образование солнечной системы, с помощью одних только сил тяготения скорее всего не удастся. И тогда скандинавский физик К. Биркеланд занялся исследованием «возможности вытекания заряженных частиц из Солнца и образования из них колец, радиусы которых зависят от отношения электрического заряда частиц к их массе».
Выводы К. Биркеланда убедительными не получились. Слишком велик был еще разрыв между теориями электромагнитного и гравитационного полей, чтобы можно было сразу надеяться на успех такого нового подхода к проблеме.
Данный текст является ознакомительным фрагментом.