9 Фантастический миг

We use cookies. Read the Privacy and Cookie Policy

9

Фантастический миг

Глава, в которой о бозоне Хиггса рассказывают словами, понятными даже британскому политику, в ЦЕРНе обнаруживают признаки бозона, включают Большой адронный коллайдер, и он взрывается

В проекте ССК физики сильно рискнули и проиграли. Ропот недовольства, которое в конце концов привело к закрытию американского проекта, начал раздаваться и в Европе. К счастью для ЦЕРНа, он финансировался средствами не одной отдельной страны. Однако страны-участницы, недовольные величиной отчисляемых вложений, все же могли решить и прекратить финансирование. В апреле 1993 года, всего за полгода до того, как палата представителей США приняла окончательное решение закрыть проект ССК, министр науки Великобритании Уильям Уолдгрейв поставил перед британским сообществом физики высоких энергий неожиданную задачу.

Поставленная Уолдгрейвом задача предвосхищала серьезный сдвиг в научной политике консервативного правительства во главе с премьер-министром Джоном Мейджором. Правительственный доклад, который должен был быть опубликован в следующем месяце, смещал акцент в научной политике в сторону инноваций, имевших целью более эффективное накопление богатств и повышение качества жизни граждан Великобритании. Иными словами, британская наука должна была служить интересам британской экономики к пользе «британского народа». Правительство собиралось полностью пересмотреть свою поддержку науки и технологии.

Все это не предвещало ничего хорошего. Британия еще оправлялась от последствий глобальной рецессии, наступившей после падения фондового рынка в октябре 1987 года, и с трудом могла позволить себе ежегодно вкладывать в ЦЕРН 55 миллионов фунтов. Хотя физики могли указать на многие дополнительные выгоды от ЦЕРНа, например проект присоединения к гипертекстовому Интернету, в результате чего Тим Бернерс-Ли изобрел Всемирную паутину в 1990 году, пожалуй, объяснить, каким образом открытие бозона Хиггса непосредственно улучшит накопление богатств и качество жизни британского народа, было трудновато.

К счастью, физиков еще не просили делать подобного рода обоснования. Но Уолдгрейв ясно дал понять, что им придется очень постараться, чтобы объяснить, чего такого они пытаются добиться.

Что это за штука, которую называют бозоном Хиггса? Чем она так важна, что нужно тратить миллиарды долларов только ради того, чтобы ее найти? «Если вы поможете мне в этом разобраться, у меня будет больше шансов помочь вам получить деньги на его поиски», – сказал Уолдгрейв слушателям на ежегодной конференции британского Института физики[140]. Он сказал, что если бы ктонибудь простым английским языком, на одном листе бумаги объяснил, из-за чего весь сыр-бор, тогда он подарил бы ему бутылку винтажного шампанского.

Разумеется, весь сыр-бор поднялся из-за того, что поле Хиггса стало играть ключевую роль в Стандартной модели. Без поля Хиггса не нарушилась бы электрослабая симметрия[141]. Без нарушения симметрии W– и Z-частицы были бы безмассовыми, как фотон, и электрослабое взаимодействие было бы объединено. Без взаимодействия между элементарными частицами и полем Хиггса не было бы массы: ни материи, ни звезд, ни планет, ни жизни. А прямо доказать существование этого поля можно было, только найдя частицу этого поля – бозон Хиггса. Найдите бозон Хиггса, и мы тут же узнаем гораздо больше об истинной природе материального мира.

Чтобы объяснить механизм Хиггса простым языком, понятным даже политику, требовалась простая аналогия. Дэвид Миллер, профессор физики элементарных частиц и астрономии в Университетском колледже Лондона, посчитал, что он нашел именно такую. Он решил, что достаточно будет небольших косметических изменений и у него получится живая картина, если он воспользуется опытом самого Уолдгрейва, опытом общения с выдающейся личностью, которая еще недавно господствовала в британской политике: бывшим премьер-министром Маргарет Тэтчер. Он написал[142]:

«Представьте себе вечеринку с членами политических партий, которые равномерно распределены по комнате и все разговаривают с ближайшим соседом. Входит мадам бывший премьер-министр и идет по комнате. Все партийные функционеры, находящиеся радом, с силой притягиваются к ней и скапливаются вокруг нее. По мере движения она притягивает тех, к кому приближается, а те, кого она оставила, снова равномерно распределяются по комнате. Из-за того что вокруг нее все время скапливается толпа народа, она приобретает массу больше обычной, то есть у нее больший импульс при той же скорости движения по залу. При движении ее труднее остановить, а после остановки ее труднее заставить двигаться вновь, так как процесс скопления приходится начинать сначала. Это и есть механизм Хиггса в трех измерениях и с усложнениями, которое вносит принцип относительности.

Чтобы сообщить массу частицам, мы предположили фоновое поле, которое локально искажается, когда частица движется сквозь него. Искажение – скопление поля вокруг частицы – генерирует массу частицы. Возьмем пример прямо из физики твердых тел. Вместо поля, распределенного по всему пространству, твердое тело содержит решетку положительно заряженных атомов кристалла. Когда электрон движется по решетке, атомы притягиваются к нему, отчего эффективная масса электрона становится в сорок раз больше массы свободного электрона.

Постулированное поле Хиггса в вакууме – своего рода гипотетическая решетка, пронизывающая нашу Вселенную. Оно необходимо нам, потому что иначе мы не можем объяснить, почему Z– и W-частицы, переносящие слабое взаимодействие, массивны, а фотон, переносящий электромагнитное взаимодействие, не имеет массы».

Так Миллер описал механизм, при помощи которого безмассовые элементарные частицы (которые в аналогии представляют Тэтчер) взаимодействуют с полем Хиггса (равномерным распределением партийных функционеров) и таким образом приобретают массу, как показано на рис. 20. Чтобы объяснить бозон Хиггса, Миллер продолжал:

«А теперь представьте, что по комнате с партийными функционерами прошел слух. Те, кто находится рядом с дверью, слышат его первыми и скапливаются в группу, чтобы узнать подробности. Потом они разворачиваются и переходят к ближайшим соседям, которым тоже хочется послушать. По комнате проходит волна скоплений. Она может распространиться до всех четырех углов или образовать компактный узел, который переносит новость по линии функционеров от двери до какого-то высокопоставленного лица по ту сторону комнаты. Так как информацию переносят скопления людей и так как именно скопления сообщали дополнительную массу бывшему премьер-министру, тогда скопления – переносчики слуха тоже имеют массу.

Рис. 20

Объяснение механизма Хиггса, которое использовал Дэвид Миллер в своей конкурсной заявке, занявшей первое место. По мере движения Маргарет Тэтчер через «поле» партийных функционеров поле скапливается вокруг нее, и движение замедляется. Так приобретается масса. Источник: © copyright CERN

Бозон Хиггса, как предсказано, является таким скоплением в поле Хиггса. Нам будет гораздо проще поверить, что поле существует и что механизм сообщения массы другим частицам верен, если мы увидим саму частицу Хиггса. И этому тоже есть аналогия в физике твердых тел. Кристаллическая решетка может переносить волны скоплений, и ей не требуется, чтобы электрон двигался и притягивал атомы. Эти волны могут вести себя так, как если были бы частицами. Они называются фотонами и тоже бозоны. Механизм Хиггса и поле Хиггса могут существовать в течение всей жизни нашей Вселенной, но при этом может не существовать бозона Хиггса. Это должно установить новое поколение коллайдеров».

Рис. 21 наглядно это иллюстрирует.

Уолдгрейв получил 117 заявок, что само по себе говорит о важности поисков. Вперед вышли пятеро, но сообщество физиков признало лучшей заявку Миллера. Миллер не забыл забрать свою бутылку «Вдовы Клико», хотя, по всей видимости, так его и не попробовал. «Моя жена, ее сестра и подружка моего сына выпили все шампанское», – рассказал он[143].

Несмотря на стесненные обстоятельства, британское правительство продолжало вкладывать средства в ЦЕРН[144].

Рис. 21

Бозон Хиггса похож на слух, который шепотом передается по «полю» партийных работников. На поле происходит скопление тех, кто желает услышать слух, и формируется локализованная «частица», которая затем движется по комнате. Источник: © copyright CERN

Когда охота за бозоном Хиггса приостановилась, оставалось найти еще несколько частиц Стандартной модели. 2 марта 1995 года две соперничающие исследовательские группы по 400 физиков каждая объявили об открытии истинного кварка. Его удалось установить по продуктам его распада. Энергетические протоны и антипротоны сталкиваются и образуют пару из истинного кварка и истинного антикварка. Обе частицы затем распадаются на прелестный кварк и W-частицу. W-частица распадается на мюон и мюонное антинейтрино. Кварк распадается на верхний и нижний кварки. В конечном итоге получается столкновение, продукт которого мюон, мюонное антинейтрино и четыре кварковых струи. У истинного кварка огромная масса – 175 ГэВ, почти в 40 раз больше массы его партнера третьего поколения – прелестного кварка.

Помимо бозона Хиггса, еще оставалось открыть таунейтрино. О его открытии Фермилаб объявил через пять лет, 20 июля 2000 года. Тогда появилась возможность составить порядок слабых взаимодействий, меняющих один аромат кварка на другой (см. рис. 22).

Еще оставалась какая-то надежда, что Тэватрон или БЭП обнаружат бозон Хиггса, и потому они работали на пределе своих возможностей. Проблема была в том, что невозможно было точно предсказать массу бозона Хиггса. В отличие от частиц W и Z физики не очень понимали, где его искать.

В основном считалось, что бозон должен иметь массу порядка 100–250 ГэВ. Его можно было обнаружить по каналам распада, при котором, как полагали, образуются пары из прелестного кварка и антикварка в связи с истинным и прелестным кварками, двумя высокоэнергетическими фотонами, парами Z-частиц, которые бы, в свою очередь, распались на четыре лептона (электроны, мюоны и нейтрино), пары W-частиц и пары тау-лептонов.

БЭП был мощным и универсальным коллайдером, но его эксплуатационный срок подходил к концу, и его планировали остановить в сентябре 2000 года.

Рис. 22

Преобладают следующие пути распада слабого взаимодействия, меняющие аромат кварков: нижний?верхний, странный?верхний, очарованный?странный, нижний?очарованный и верх ний?нижний. Пунктиром также показаны два менее вероятных пути распада: очарованный?нижний и нижний?верхний. Верхние переходы происходят с испусканием частицы W, которая распадается на лептон (например, электрон) и соответствующее антинейтрино. Нижние переходы происходят с испусканием частицы W+, которая распадается на антилептон (например, позитрон) и соответствующее нейтрино

В последней отчаянной попытке найти бозон Хиггса физики ЦЕРНа нагрузили коллайдер сверх его возможностей. Он достиг расчетной энергии пучка 45 ГэВ (что дает энергию электрон-позитронных столкновений 90 ГэВ) в августе 1989 года. Благодаря модернизации энергия столкновения возросла до 170 ГэВ, что дало возможность генерировать пары W-частиц. Летом 2000 года благодаря новым модификациям энергия столкновения превысила 200 ГэВ.

15 июня 2000 года физик ЦЕРНа Никос Константинидис изучал некое событие, зарегистрированное накануне детектором ALEPH[145]. Он показал четыре кварковых струи, две из которых возникли после распада Z-частицы. Другие две струи казались продуктом распада более тяжелой частицы с массой порядка 114 ГэВ.

В глазах всего мира она выглядела, как бозон Хиггса.

Конечно, одно событие еще не было открытием, но за ним вскоре последовало еще два события, зарегистрированные детектором ALEPH, и два события, зарегистрированные вторым детектором – DELPHI[146]. Этого по-прежнему не хватало, чтобы заявить об открытии, но хватило, чтобы убедить генерального директора ЦЕРНа Лучано Майани подождать с приговором БЭПу до 2 ноября. Когда L3, третий детектор, зарегистрировал событие иного рода, которое было похоже на распад бозона Хиггса на Z-частицу, распавшуюся затем на два нейтрино, казалось, что ЦЕРН стоит на пороге одного из величайших открытий физики высоких энергий с тех самых пор, как в 1964 году был предсказан бозон Хиггса.

Физики ЦЕРНа уговаривали дать БЭПу поработать еще полгода. Майани как будто склонялся выполнить их просьбу, но, встретившись несколько раз с главными исследователями и как следует все обдумав, он в конце концов решил, что данных недостаточно для того, чтобы оправдать возможную задержку строительства Большого адронного коллайдера. Невозможно было сделать плавный переход, легко переключиться с БЭПа на БАК, так как это требовало долгого времени. Чтобы построить БАК, туннель, где размещался БЭП, нужно было полностью опустошить. Майани считал, что у него нет иного выбора, кроме как закрыть БЭП. Сотрудники ЦЕРНа узнали о его решении из пресс-релиза.

Многие физики были убеждены, что они очень близки к эпохальному открытию, и то, как повел себя Майани в такой ситуации, у них оставило чувство горечи. Однако, когда они скрупулезно проанализировали события, вероятность, что они действительно свидетельствовали о бозоне Хиггса, стала еще меньше. «Я понимаю раздражение и печаль тех, кому казалось, что бозон Хиггса уже у них в руках, – писал Майани в феврале 2001 года, – и кто опасается, что пройдут годы, прежде чем их труд найдет подтверждение»[147].

Единственный вывод, который могли сделать физики, – это что масса бозона Хиггса должна быть больше 114,4 ГэВ, вероятно около 115,6 ГэВ.

После открытия истинного кварка и тау-нейтрино коллекция элементарных частиц, составляющих Стандартную модель, была собрана полностью. Физики оказались в беспрецедентной ситуации, когда у них не осталось экспериментальных данных, которые не укладывались бы в предсказания теорий. И тем не менее у теоретиков было еще много работы.

Большие недостатки Стандартной модели бросались в глаза с самого момента ее создания. Модель должна учитывать весьма настораживающее количество фундаментальных или элементарных частиц. Эти частицы соединяются в структуре, для которой требуются двадцать параметров, но их нельзя вывести из теории, а можно только измерять. Из этих двадцати параметров двенадцать должны точно указывать массы кварков и лептонов, а три – силу взаимодействия между ними.

Вдобавок есть проблема и с массой самого бозона Хиггса. Бозон приобретает массу через так называемые петлевые поправки, которые учитывают его взаимодействия с виртуальными частицами. Петлевые поправки с участием более тяжелых частиц, таких как виртуальный истинный кварк, означают, что бозон Хиггса гораздо массивнее, чем должен быть, чтобы нарушить электрослабую симметрию так, как от него требует теория. В итоге теория предсказывает гораздо более слабое взаимодействие, чем оно есть на самом деле. Это называют проблемой иерархии.

К тому же, несмотря на в общем успешное объединение слабого и электромагнитного взаимодействия, осуществленное Глэшоу, Вайнбергом и Саламом, теория структуры SU(3) ? SU(2) ? U(1) поля Янга – Миллса, составляющая Стандартную модель, отнюдь не является абсолютно единой теорией фундаментальных взаимодействий.

В отсутствие экспериментальных указаний у теоретиков не осталось выбора, кроме как руководствоваться красотой и следовать за своей интуицией в поиске теорий, которые бы вышли за рамки Стандартной модели и объяснили законы природы на еще более фундаментальном уровне.

Помимо теорий великого объединения типа теории Джорджи – Глэшоу, существует еще один подход к объединению, который в начале 1970-х предложили теоретики в Советском Союзе и независимо открыли в 1973 году физики ЦЕРНа Юлиус Весс и Бруно Зумино. Он называется суперсимметрией. Есть много разновидностей теорий суперсимметрии, но одна из самых простых, впервые предложенная в 1981 году и названная минимальной суперсимметричной Стандартной моделью (МССМ), включает в себя «супермультиплеты», соединяющие частицы материи (фермионы) с бозонами, частицами – переносчиками взаимодействия.

В теориях суперсимметрии уравнения инвариантны относительно замены фермионов на бозоны и наоборот. Сами разнообразные свойства и поведение фермионов и бозонов в физике, которые мы наблюдаем сегодня, должны в таком случае быть следствием нарушения или скрытия этой суперсимметрии.

Одним из следствий этой суперсимметрии более высокого порядка является увеличение числа частиц. На каждый фермион теория предсказывает соответствующий суперсимметричный фермион (который называется сфермион), который на самом деле бозон. Иными словами, на каждую частицу Стандартной модели теория требует существования массивного суперсимметричного партнера со спином, отличающимся на 1/2. Партнер электрона называется сэлектрон (сокращение от «скалярный электрон»). У каждого кварка есть партнер в виде соответствующего скварка.

Кроме того, у каждого бозона Стандартной модели есть соответствующий симметричный бозон, который называется бозино, и на самом деле он фермион. Суперсимметричные партнеры фотона и частиц W и Z называются фотино, вино и зино.

Одно из преимуществ МССМ заключается в том, что она решает проблему бозона Хиггса. В МССМ петлевые поправки, из-за которых раздувается масса бозона Хиггса, компенсируются отрицательными поправками, проистекающими из взаимодействий с участием виртуальных суперсимметричных частиц. Например, увеличение массы бозона Хиггса благодаря взаимодействию с виртуальным истинным кварком компенсируется взаимодействием с виртуальным истинным скварком. Эта компенсация стабилизирует массу Хиггса и, следовательно, слабое взаимодействие. Чтобы этот механизм работал, МССМ требуются пять бозонов Хиггса с разной массой. Три из них нейтральны, а два переносят электрический заряд.

МССМ устраняет и еще один недостаток Стандартной модели. Как показали Вайнберг, Джорджи и Куинн в 1974 го ду, сильное, слабое и электромагнитное взаимодействия Стандартной модели становятся почти равными на высоких энергиях. Однако они не становятся абсолютно равными, как можно было бы ожидать в полностью объединенной теории поля электроядерного взаимодействия. МССМ предсказывает, что силы трех взаимодействий сойдутся в одной точке (см. рис. 23).

Кроме того, суперсимметрия может решить давнишнюю проблему космологии. В 1934 году швейцарский астроном Фриц Цвикки обнаружил, что средняя масса галактик в скоплении Волос Вероники, вычисленная по их гравитационным эффектам, не соответствует средней массе, вычисленной по светимости галактик в ночном небе. Целых 90 процентов массы, необходимой для объяснения гравитационных эффектов, как будто отсутствовала или была невидима. Эту невидимую массу назвали темной материей.

Рис. 23 (а) Если экстраполировать силы взаимодействий в Стандартной модели, из этого следует уровень энергии (и время после Большого взрыва), при котором они одинаковы и объединены. Однако они не сливаются полностью в одной точке. (b) В минимальной суперсимметричной Стандартной модели (МССМ) дополнительные квантовые поля влияют на экстраполяцию, и взаимодействия сливаются

Проблема темной материи не ограничилась одним скоплением галактик. Темная материя – ключевой компонент современной Стандартной модели космологии Большого взрыва, модели Лямбда-CDM (сокращение от Cold Dark Matter, холодная темная материя). Последовательные наблюдения микроволнового фонового излучения, произведенные спутником COBE и в последнее время спутником WMAP, позволяют предположить, что темная материя составляет около 22 процентов массы-энергии Вселенной. Около 73 процентов – это темная энергия, связанная со всепроникающим энергетическим полем вакуума, и таким образом на долю «видимой» материи Вселенной – звезд, нейтрино и тяжелых элементов, то есть всего, что мы есть, и всего, что мы видим вокруг, – приходится меньше 5 процентов.

Суперсимметрия предсказывает существование суперчастиц, на которые не влияет ни сильное, ни электромагнитное взаимодействие. Поэтому суперчастицы, например нейтралино, являются кандидатами на роль так называемых «вимпов» – слабовзаимодействующих массивных частиц (WIMP), которые, как считается, составляют значительную часть темной материи[148].

Возможно, существование такого сонма суперсимметричных частиц кажется фантастическим, но история физики элементарных частиц сплошь состоит из фантастических открытий, основанных на теоретических прогнозах, от которых поначалу многие отмахиваются, считая их абсурдными. Если суперсимметричные частицы действительно существуют, то некоторые из них, как ожидается, проявятся на энергиях порядка тераэлектронвольт.

Когда в начале нового тысячелетия на глубине более 150 метров под швейцарской и французской землей началось строительство Большого адронного коллайдера, было очевидно, что у него гораздо более масштабная задача, чем обнаружение электрослабого бозона Хиггса или даже нескольких бозонов или суперсимметричных частиц, предсказанных МССМ. Смысл был в том, чтобы выйти за пределы Стандартной модели; в нашей способности разобраться, из чего состоит и как устроен мир.

В декабре 2000 года начался демонтаж БЭП. Пришлось вывезти 40 тысяч тонн материала. Полностью туннель освободили к ноябрю 2001 года, когда инженеры-геодезисты начали размечать первый из 7 тысяч участков, отведенных под компоненты БАКа.

Неизбежно возникали задержки. В октябре 2001 года Майани установил значительный перерасход средств сверх сметы, и из-за последующей нехватки бюджетных средств завершение проекта отодвинулось еще на год, с 2006 на 2007. Как и у американцев, которые обнаружили это на примере своего незаконченного проекта по строительству ССК, новая технология с использованием сверхпроводящих магнитов забирала гораздо больше денег, чем закладывалось в смету.

Сооружение крупнейшей в мире охладительной системы, способной охлаждать сверхпроводящие магниты до температуры –271,4 °C, закончилось в октябре 2006 года. Последний из 1746 сверхпроводящих магнитов БАКа был установлен в мае 2007 года.

Хотя под БАК отвели тот же 27-километровый туннель, в котором располагался БЭП, для размещения новых детекторных установок снова требовалось вынимать грунт.

В первоначальной планировке у БАКа предусматривалось четыре основные детекторные установки. Это ATLAS (A Toroidal LHC Apparatus, тороидальный аппарат БАК), CMS (Compact Muon Solenoid, компактный мюонный соленоид), ALICE (A Large Ion Collider Experiment, большой ионный коллайдер) для изучения столкновений тяжелых ионов (ядер свинца) и LHCb (Large Hadron Collider beauty, большой адронный коллайдер b-кварков), специально предназначенный для изучения физики прелестных кварков.

Потом к ним добавились еще два детектора намного меньшего размера. TOTEM (TOTal Elastic and diffractive cross section Measurement, измерение полного сечения упругого дифракционного рассеяния) предназначен для измерения исключительно высокоточных протонов и установлен недалеко от центра детектора CMS, где сталкиваются протоны. И наконец, это LHCf (Large Hadron Collider forward, большой адронный коллайдер «передний»), задача которого – изучать частицы, образующиеся в «передней» части протон-протонных столкновений, вылетающие в направлении почти совпадающем с направлением сталкивающихся пучков. Он расположен рядом с детектором ATLAS, недалеко от точки пересечения пучков.

Многоцелевые детекторы ATLAS и CMS предназначены для поиска бозона Хиггса и другой «новой физики», которая может продемонстрировать существование суперсимметричных частиц и разрешить загадку темной материи. Детектор ATLAS состоит из ряда все более увеличивающихся концентрических цилиндров, расположенных вокруг точки пересечения протонных пучков. Функция внутреннего детектора в том, чтобы отслеживать заряженные частицы, идентифицировать их и измерять импульс. Внутренний детектор окружен большим соленоидальным (в виде катушки) сверхпроводящим магнитом, который изгибает траекторию движения заряженных частиц.

Снаружи находятся электромагнитный и адронный калориметры, которые поглощают заряженные частицы – фотоны и адроны – и выводят их энергию из создаваемых ими потоков частиц. Мюонный спектрометр измеряет импульс мюонов, которые проходят сквозь другие элементы детектора. В нем используется тороидальное (в форме пончика) магнитное поле, создаваемое большими сверхпроводящими магнитами, образующими восемь баррелей и два торцевых тороида. Это самые крупные сверхпроводящие магниты в мире (см. рис. 24).

Рис. 24

Детектор ATLAS использует тороидальное (в форме пончика) магнитное поле, генерируемое огромными сверхпроводящими магнитами, которые образуют восемь цилиндрических баррелей и два торцевых тороида. Это крупнейшие сверхпроводящие магниты в мире. Источник: © copyright CERN

ATLAS не может распознавать нейтрино, и их присутствие приходится выводить из расхождения энергии между столкнувшимися и обнаруженными частицами. Поэтому детектор должен быть герметичным: ни одна частица, кроме нейтрино, не должна ускользнуть незамеченной.

Детектор ATLAS имеет около 45 метров в длину и 25 метров в высоту, примерно вдвое меньше собора Парижской Богоматери. Он весит около 7 тысяч тонн, как Эйфелева башня или сто «Боингов-747» без пассажиров. Коллаборацию ATLAS возглавляет итальянский физик Фабиола Джанотти, она включает 3 тысячи физиков из более чем 174 университетов и лабораторий 38 разных стран.

У детектора CMS другая конструкция, но аналогичные возможности. Внутренний детектор представляет собой трекинговую систему из кремниевых пиксельных и стриповых детекторов, которые измеряют положение заряженных частиц, что позволяет восстановить их путь. Как и в детекторе ATLAS, электромагнитный и адронный калориметры измеряют энергию заряженных частиц, фотонов и адронов. Мюонный спектрометр фиксирует данные о мюонах, проникающих сквозь калориметры.

Детектор CMS называется компактным, то есть в нем используется один крупный соленоидальный сверхпроводящий магнит, поэтому он меньше детектора ATLAS. Однако он не так уж мал: 21 метр в длину, 15 метров в ширину и 15 метров в высоту (см. рис. 25). На веб-сайте детектора можно узнать, что он расположен в подземной «пещере, где могли бы поместиться все жители Женевы, хотя и без удобства»[149]. Коллаборацию детектора CMS возглавляет итальянский физик Гвидо Тонелли, и она также включает 3 тысячи физиков и инженеров из 183 институтов 38 стран.

В 1997 и 1998 годах началась работа по строительству компонентов ATLAS и CMS и рытье котлованов под их размещение. Монтаж детекторов закончился в начале 2008 года.

Рис. 25

Питер Хиггс (слева) посещает детектор CMS во время строительства. Здесь он с официальным представителем CMS Теджиндером Верди.

Источник: © copyright CERN

В августе 2008 года все 27 километров Большого адронного коллайдера были охлаждены до рабочей температуры. Потребовалось более 10 тысяч тонн жидкого азота и 150 тонн жидкого гелия, чтобы целиком заполнить магниты.

БАК был готов к запуску.

«Это фантастический миг, – заявил 10 сентября 2008 года Линдонд Эванс, руководитель проекта БАК. – Наконец-то мы стоим на пороге новой эпохи знаний о происхождении и эволюции Вселенной»[150].

Как ни печально, восторг Эванса быстро улетучился. БАК заработал в 10:28 утра по местному времени. Физики сбились в тесном центре управления и подняли радостный шум, когда на экране мелькнула вспышка света, сообщив о том, что высокоскоростные протоны отправились в путь по 27-километровому кольцу коллайдера при рабочей температуре всего на два градуса выше абсолютного нуля. Вот такой скромной на вид (к некоторому разочарованию миллиарда зрителей, которые, как считается, следили за происходящим по телевизору) оказалась кульминация двух десятилетий неустанных трудов целой армии физиков, проектировщиков, инженеров и строителей.

В 3 часа того же дня второй пучок протонов отправился по кольцу в противоположном направлении. И вскоре начались проблемы. Всего через девять дней электрический контакт между двумя сверхпроводящими магнитами расплавился. Электрическая дуга пробила изоляцию гелиевой системы охлаждения магнитов. Гелий попал в сектор 3–4 туннеля БАКа, произошел взрыв, и 53 магнита были повреждены, а протонные трубы загрязнены сажей.

Не было никакой надежды восстановить коллайдер до его запланированной остановки на зиму, и повторный запуск предварительно назначали на весну 2009 года. Однако возникли новые осложнения, и на совещании в Шамони в феврале 2009 года руководство ЦЕРНа решило продолжить работы.

Дата повторного пуска отодвинулась на неопределенное будущее.

Данный текст является ознакомительным фрагментом.