V. А разве относительность не придает атомам бесконечную энергию?

We use cookies. Read the Privacy and Cookie Policy

V. А разве относительность не придает атомам бесконечную энергию?

Все эти разговоры о часах и эталонах метра и скорости света, возможно, интересны и сами по себе, но, наверное, когда (и если) вы задумываетесь об относительности, в голову вам первым делом приходят некоторые другие вопросы. Почти наверняка вы думаете при этом о самой знаменитой физической формуле (и единственной, которую вы встретите в этой книге в явном виде):

E = mc2?.

Выглядит она крайне просто, к тому же вы уже познакомились с одной из ее составляющих – это с, скорость света.

Буква Е в левой части обозначает энергию, и мы совсем скоро поговорим о том, при чем тут энергия, но сначала обсудим другую составляющую – m, то есть массу.

Вероятно, вам кажется, что масса – это мера «величины» предмета, но для физика масса всего-навсего отражает то, насколько трудно заставить предмет двигаться и насколько трудно остановить его, если он уже движется. Гораздо проще остановить Рыжего, если он бежит на вас со скоростью 15 километров в час, чем его поезд, если он едет с той же скоростью.

Но мы уже заметили одну интересную вещь, касающуюся эффективной массы – в данном случае эффективной массы консервных банок с фасолью. Мы обнаружили, что чем выше скорость банки, тем больше работы требуется, чтобы разогнать ее хоть чуточку быстрее. Иначе говоря, банка с фасолью ведет себя так, словно становится все более и более массивной (то есть ее все труднее и труднее двигать). А как мы уже отметили, если скорость банки приближается произвольно близко к скорости света, впоследствии потребуется бесконечное количество работы, чтобы придать банке хоть какое-то ускорение.

Посмотрим с другой стороны: при увеличении энергии движения инерционная масса тоже увеличивается, то есть материя банки не прирастает, но банка ведет себя так, словно это происходит. Но даже если скорость банки снизится до нуля, то есть энергии движения не будет вообще, инерция банки никуда не денется. Если банка с фасолью совершенно неподвижна, она все равно обладает определенным количеством энергии, некоторой минимальной инерционной массой. Если добавлять энергию, то инерционная масса только увеличивается.

Знаменитое уравнение Эйнштейна – не более чем формула преобразования массы в энергию и обратно.

У этой формулы широчайший спектр самых удивительных применений, и мы буквально видим ее отражение каждую секунду всю жизнь – в солнечном излучении.

Теория Эйнштейна, по всей видимости, находит успешное применение на практике, однако, кроме того, она необычайно сильно повлияла на общественное сознание, особенно на сознание тех, кто ее не понимает.

Один из уважаемых авторов этой книги (Голдберг), будучи действующим ученым, часто получает рукописи, сочинители которых заявляют, будто разработали теорию, которая опровергает существующие физические парадигмы, и в девяти случаях из десяти главный их тезис – что великое уравнение Эйнштейна ошибочно, что его логика ущербна или просто что математически допустимо другое толкование. Этот феномен настолько распространен и наблюдается настолько часто (причем со временем все чаще), что даже спустя 100 лет после того, как Эйнштейн опубликовал свою формулу, в журнале «Америкэн Лайф» появилась статья о человеке, который (безуспешно) попытался доказать, будто «Е не равно эм це квадрат».

Почему же простая формула преобразования вызывает такой ажиотаж? Отчасти потому, что она так проста на вид. Никаких незнакомых буковок, к тому же большинство людей в общих чертах понимают физический смысл всех ее составляющих. И она действительно очень простая. Как будто нам говорят: «Вот хочу продать мою материю и получить энергию. Сколько дадите?»

Ответ: «Довольно-таки много». Дело в том, что, как мы уже установили, с – большое число, а мы еще возводим его в квадрат и умножаем на него массу.

Начнем с малого. Представим себе, что у вас есть около двух граммов буммония – это такое вещество, которое мы только что придумали, так что имеем право запатентовать и употреблять его название. Это примерно масса монетки в один пенни, и вам каким-то образом удается превратить ее в энергию. Если бы такое было возможно, а мы вас уверяем, что нет, вы бы получили около 180 триллионов джоулей. Не представляете себе, сколько это? Не проблема, объясним.

Такая энергия позволит вам:

1) сделать так, чтобы 50 тысяч стоваттных лампочек горели целый год;

2) с лихвой обеспечить калориями все население городка Терре-Хот в штате Индиана (с населением 57?259 человек) на целый год;

3) заменить энергию примерно 5000 тонн угля или 6?356?000 литров бензина. Если заправить этим бензином автомобиль, можно перевезти на нем всех до единого жителей Терре-Хот из Нью-Йорка в Калифорнию. Непонятно, правда, зачем это делать.

Для сравнения, энергия сгорания двух граммов угля питает одну лампочку примерно час.

Материя, как и большинство людей, не развивает свой потенциал полностью, а если не считать случаи, когда мы сталкиваем материю с «антиматерией» или «антивеществом» (о чем мы еще поговорим), преобразовать всю массу в энергию невозможно. Так что не считайте, будто от E = mc?2 один шаг до полной независимости от нефти, остановитесь. Рано радоваться.

Великое уравнение Эйнштейна изменило мир: самые очевидные примеры его применения – ядерное оружие и атомная энергия. Важно понимать, что при большинстве ядерных реакций мы преобразуем в энергию лишь крошечную часть общей массы материи. Наше Солнце – гигантский термоядерный генератор, который превращает водород в гелий. Основная реакция предполагает, что мы берем четыре атома водорода и получаем один атом гелия и некоторое количество отходов, в том числе нейтрино, позитроны и, само собой, энергию в виде света и тепла. Для нас это крайне выгодно – ведь энергия, вырабатываемая Солнцем, в виде солнечных лучей согревает поверхность Земли, питает растения и водоросли и в конечном счете поддерживает нас как экосистему.

Однако по эффективности всему этому далеко до нашего буммония. Из каждого килограмма водорода, «сгорающего» на Солнце[17], мы получаем 993 грамма гелия, а значит, в энергию преобразуется лишь семь граммов. Однако, как мы уже видели, и небольшой массы хватает для великих дел.

Самые известные примеры преобразования массы-энергии – это именно превращение массы в энергию, а не наоборот, в том числе самые страшные из этих превращений и вообще главный кошмар на этой Земле – ядерные бомбы и радиоактивный распад. В каждом из этих случаев столкновение энергичных частиц или спонтанный распад заставляет небольшое количество массы преобразоваться в ошеломительно огромную энергию. Почему радиоактивные вещества такие страшные? Потому, что даже при одном распаде образуется фотон с такой колоссальной энергией, что дай ему хоть малейший шанс, и он попортит вам клетки.

Когда Вселенная только зародилась, в ней гораздо чаще происходил обратный процесс – из энергии получалась материя, хотя сейчас такое бывает довольно редко. В те далекие времена, когда температура достигала миллиардов градусов, материя то и дело возникала от столкновения лучей света друг с другом. Невероятно, но факт. Вот почему мы вернемся к этому в главе 7.

Хит-парад среди физиков!

Кто самый выдающийся физик современности? Горячая пятерка!

Нас то и дело вовлекают в досужие споры на уровне «кто лучше – Кирк или Пикар?» или «кто самый лучший физик?». Если ответ на первый вопрос очевиден для всякого, кто хотя бы одним глазом смотрел «Звездный Путь» и при этом не йинтагх[18], то второй вопрос куда сложнее. Если бы спор был на деньги, мы бы отстаивали ту точку зрения, что величайшие физики – те, в чью честь назвали что-нибудь важное и серьезное, даже если кто-нибудь другой уже пришел независимо к тому же выводу. Иногда величайшие мыслители не удостаиваются заслуженной славы (мы думаем о вас, Тесла), но наш список такие случаи, увы, не учитывает – считайте, что таким людям просто не повезло. Нас интересуют именно знаменитости. Кроме того, поскольку мы хотим не отставать от жизни, то, к сожалению, не будем рассматривать заявки от тех, кто совершил самые значительные открытия до 1900 года. Наконец, мы уверены, что многие физики не согласятся с нашим списком, но им мы со всем нашим уважением предложим написать собственную книгу.

Итак:

1. Альберт Эйнштейн (1879–1955),

Нобелевская премия за 1921 год.

Нужны ли здесь какие-либо аргументы? Эйнштейн создал теорию относительности – и специальную (эта глава), и общую (главы 5 и 6), – причем, судя по всему, на абсолютно пустом месте и совершенно самостоятельно. Он неопровержимо доказал, что свет состоит из частиц (глава 2), и стал одним из отцов-основателей квантовой механики, хотя сам в нее толком не верил. Его имя стало синонимом слова «гений», к тому же, положа руку на сердце, он единственный из нашего списка, кого вы знаете в лицо.

2. Ричард Фейнман (1918–1988),

Нобелевская премия за 1965 год.

Благодаря уникальному складу ума Фейнман стал героем и примером практически для каждого молодого физика. Он изобрел квантовую электродинамику, которая при помощи квантовой механики объясняла, как устроено электричество (глава 4), и доказал, что частицы и поля буквально двигаются по всем возможным путям одновременно (глава 2). Кроме того, он прославился как «великий популяризатор», и по крайней мере несколько примеров из нашей книги беспардонно (но со ссылками) свистнуты из лекций Фейнмана.

3. Нильс Бор (1885–1962),

Нобелевская премия за 1922 год.

Довольно скоро вы прочитаете главу 2, которая будет посвящена квантовой механике. Вы ее обязательно полюбите! Даже если нет, ближе к середине главы мы расскажем, что стандартные представления о квантовой механике на настоящий момент называются «копенгагенской интерпретацией». Догадайтесь с трех раз, откуда Бор родом. Бор не только в общих чертах определил мировоззрение современного человека, но и первым создал реалистичную картину атома и показал, что как попало атом не сляпаешь – его состояния «квантуются».

4. Поль Адриен Морис Дирак (1902–1984),

Нобелевская премия за 1933 год.

Дирак был среди тех, кто продрался сквозь целую гору уравнений, получил формулу, которая на вид казалась физически абсурдной, но решил, что «Бог, создавая этот мир, опирался на математические выкладки восхитительной красоты», и решил, что раз так, все эти уравнения все равно верны. Примерно так он и предсказал существование антиматерии за четыре года до того, как ее обнаружили.

5. Вернер Гейзенберг (1901–1984),

Нобелевская премия за 1933 год.

Когда Гейзенбергу присудили Нобелевскую премию, формулировка была такой: «За создание квантовой механики, применение которой, среди прочего, привело к открытию аллотропных форм водорода». Хотя на самом деле Гейзенберг не создал квантовую механику, он внес колоссальный вклад в ее разработку и открыл «принцип неопределенности Гейзенберга». Об этом подробнее в главе 2.

Данный текст является ознакомительным фрагментом.