Вращение Гаргантюа
Вращение Гаргантюа
Когда Кристофер Нолан сказал мне, какое замедление времени на планете Миллер ему нужно – один час там на семь земных лет, – я был ошарашен. Я полагал это невозможным, о чем и сказал Крису. «Это не обсуждается», – отрезал он. Что ж, не в первый и не в последний раз я отправился в раздумьях домой, сделал кое-какие расчеты и… нашел выход.
Я обнаружил, что если планета Миллер будет настолько близко к Гаргантюа, насколько это возможно без риска упасть в черную дыру[36], и если скорость вращения Гаргантюа будет достаточно высокой, замедление «один час за семь лет» возможно. Но Гаргантюа должна вращаться чертовски быстро.
Для скорости вращения черных дыр есть предел. Если он будет превышен, горизонт событий исчезнет, оставив на виду у всей Вселенной обнаженную сингулярность. А это, по всей видимости, противоречит законам физики (см. главу 26).
Выяснилось, что для замедления, которое нужно Крису, Гаргантюа должна вращаться со скоростью, близкой к предельной, меньше ее примерно на одну стотриллионную долю[37]. В Кип-версии я по большей части исхожу из этого значения.
Экипаж «Эндюранс» мог бы измерить скорость вращения дыры непосредственно: наблюдая с большого расстояния, как робот ТАРС падает к Гаргантюа (рис. 6.2)[38]. Для стороннего наблюдателя ТАРС никогда не окажется за горизонтом событий (поскольку посылаемые им сигналы не смогут выйти наружу после пересечения горизонта). Вместо этого будет казаться, что падение ТАРСа замедлилось, как будто он завис над горизонтом. При этом завихряющееся пространство Гаргантюа будет кружить его вокруг черной дыры. При скорости вращения Гаргантюа, близкой к предельной, орбитальный период ТАРСа – с точки зрения стороннего наблюдателя – составит около одного часа.
Рис. 6.2. ТАРС, падающий к Гаргантюа, будет вращаться по окружности в миллиард километров; один оборот за час (для стороннего наблюдателя)
Можете подсчитать сами: длина орбиты ТАРСа, вращающегося вокруг Гаргантюа, равна миллиарду километров, и ТАРС покрывает это расстояние за один час, и стало быть, его скорость (для стороннего наблюдателя) равна примерно миллиарду километров в час – это почти скорость света! Если бы скорость вращения Гаргантюа была выше предельной, ТАРС крутился бы вокруг дыры со сверхсветовой скоростью, что нарушает запрет Эйнштейна. Это косвенное доказательство того, что скорость вращения любой черной дыры не может быть выше предельной.
В 1975 году я обнаружил механизм, с помощью которого природа предохраняет черные дыры от превышения предельной скорости вращения: когда скорость близка к предельной, черной дыре сложно захватить объект, который летит по орбите в ту же сторону, что вращается она, и который, будь он захвачен, увеличил бы скорость ее вращения. Однако черная дыра с легкостью захватывает объекты, летящие в сторону, противоположную направлению ее вращения, то есть те объекты, захват которых уменьшает скорость вращения черной дыры. Поэтому черная дыра легко замедляется, как только скорость ее вращения приближается к предельной.
В моем тогдашнем исследовании я уделил особое внимание газовому диску (он напоминает кольца Сатурна), который вращается в одном направлении с черной дырой. Этот диск называется аккреционным (см. главу 9). Силы трения в диске вынуждают газ постепенно, по спирали, переходить в черную дыру, увеличивая скорость ее вращения. Кроме того, трение нагревает газ, и он излучает фотоны. Завихрение пространства вокруг дыры захватывает эти движущиеся по ходу ее вращения фотоны и отбрасывает их прочь, из-за чего они не могут попасть внутрь. И напротив, завихрение захватывает фотоны, которые движутся в сторону, противоположную вращению дыры, и засасывает их внутрь, где они замедляют ее вращение. В итоге, когда скорость вращения черной дыры достигает 0,998 от предельной, устанавливается баланс, при котором замедление за счет захваченных фотонов в точности компенсирует убыстрение за счет поступающего в дыру газа. По-видимому, этот баланс довольно устойчив, и в большинстве случаев можно ожидать, что скорость вращения черной дыры не превышает 0,998 от предельной.
Однако я могу вообразить ситуации – очень редкие, если вообще встречающиеся в реальной Вселенной, и все же возможные, – когда скорость вращения подходит к предельной гораздо ближе, и даже настолько близко, насколько это требовалось Крису, чтобы замедлить время на планете Миллер: скорость на одну стотриллионную долю меньше предельной. Маловероятно, но возможно.
В кино это не редкость: чтобы снять шедевр, режиссер часто доводит все до предела. В фэнтезийных фильмах вроде «Гарри Поттера» этот предел находится далеко за границами научной достоверности. В научной же фантастике он, как правило, остается в границах вероятного. Собственно, это главное отличие между фэнтези и научной фантастикой. «Интерстеллар» – научная фантастика, а не фэнтези. Сверхбыстрая скорость вращения Гаргантюа с научной точки зрения возможна.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Ускорить вращение Земли
Ускорить вращение Земли Механика указывает и другой путь к ослаблению земной тяжести. Этот способ состоит в том, чтобы ускорить быстроту вращения Земли вокруг оси. Уже и теперь центробежная сила, возникающая при вращении земного шара, уменьшает вес всякого тела на
Вращение
Вращение Теперь займемся вращающимися системами. Движение такой системы определяется числом оборотов в секунду, которое совершает эта система, поворачиваясь вокруг оси. Надо, конечно, знать и направление оси вращения.Чтобы лучше понять особенности жизни во вращающихся
3.10. Вращение астероидов
3.10. Вращение астероидов Помимо вариации блеска, связанной с изменением расстояний от Солнца, Земли и угла фазы, все астероиды обнаруживают колебания блеска большей или меньшей амплитуды, в большинстве случаев с периодами от нескольких часов до одних суток.
6. Анатомия Гаргантюа
6. Анатомия Гаргантюа Если мы знаем массу черной дыры и скорость ее вращения, то, воспользовавшись законами теории относительности, мы можем узнать и все остальные ее свойства: размер, силу гравитационного притяжения, насколько сильно ее горизонт событий вытянут
Масса Гаргантюа
Масса Гаргантюа Планета Миллер (о которой я подробно расскажу в главе 17) находится настолько близко к Гаргантюа, насколько это возможно без того, чтобы планете угрожала гибель. Мы знаем об этом, поскольку экипаж, находясь там, тратит очень много «земного времени» –
Анатомия Гаргантюа
Анатомия Гаргантюа Узнав массу и скорость вращения Гаргантюа, я использовал уравнения Эйнштейна, чтобы рассчитать ее анатомию. Так же как и в главе 5, здесь мы рассмотрим только внешнюю анатомию, отложив внутреннее строение (особенно сингулярность) Гаргантюа до глав
8. Внешний вид Гаргантюа
8. Внешний вид Гаргантюа Черные дыры не светятся, поэтому увидеть Гаргантюа можно лишь постольку, поскольку черная дыра влияет на излучения от других объектов. В «Интерстеллар» эти объекты – аккреционный диск (см. главу 9) и галактика, в которой находится Гаргантюа,
18. Вибрации Гаргантюа
18. Вибрации Гаргантюа Пока Купер и Амелия Брэнд находятся на планете Миллер, Ромилли остается на «Эндюранс» и изучает черную дыру Гаргантюа. Он надеется, что точные данные позволят ему больше узнать о гравитационных аномалиях. Но более всего (как мне кажется) он
28. Внутрь Гаргантюа
28. Внутрь Гаргантюа Немного о смене убеждений В 1985 году, когда Карл Саган решил отправить свою героиню Элинор Эрроуэй (актриса Джоди Фостер) к звезде Вега через черную дыру, я сказал ему: нет! Она погибнет внутри черной дыры, безжалостная сингулярность растерзает ее
Глава 18. Вибрации Гаргантюа
Глава 18. Вибрации Гаргантюа Об открытии Билла Пресса касательно вибрации черных дыр и о выведенных Саулом Теукольским уравнениях, описывающих эти вибрации, см. [Торн 2009. С. 293–297]. Также см. научную статью [Yang et al. 2013] о вибрациях черных дыр и их особенностях, отображенных
Глава 28. Внутрь Гаргантюа
Глава 28. Внутрь Гаргантюа В прологе книги «Черные дыры и складки времени» [Торн 2009] я значительно подробнее описываю, как бы выглядело и ощущалось падение сквозь горизонт событий – как для самого падающего, так и для наблюдателя, который находится снаружи черной
Глава 6. Анатомия Гаргантюа
Глава 6. Анатомия Гаргантюа Для черной дыры, которая, как Гаргантюа, вращается очень быстро, окружность горизонта C в экваториальной плоскости выражается формулой C = 2?GM/c? = 9,3M/M¤ км. Здесь M – это масса дыры, а M¤ = 1,99 ? 1030 – это солнечная масса. У очень медленно вращающейся