КАК И ГДЕ

КАК И ГДЕ

Улучшение методов.

Совершенствование наблюдений за погодой. Требуется больше данных и лучшего качества. Есть места на Земле, откуда поступает крайне мало данных, прежде всего это горные районы и океанические поверхности. Два больших сезонных течения поверхностных океанических вод, Эль-Ниньо и Ла-Нинья, вызывают обширные синоптические явления, существенно воздействующие на погоду в мире, особенно сказываясь на сельском хозяйстве. Точный долговременный прогноз помог бы крестьянам сохранить сотни миллионов долларов. В рамках проектов наподобие ARGO, составной части Системы наблюдения за климатом Земли, на океанических просторах размещаются 3 тыс. дрейфующих станций для слежения за погодными и водными условиями.

Повышение качества моделирования. Современное математическое моделирование значительно совершенней методов Эдуарда Лоренца, но многое еще предстоит сделать. Некоторые физические процессы, управляющие погодой, весьма сложны. Нужно учитывать рельеф местности и свойства почвы, брать в расчет динамическое поведение океана и облачного покрова. Нынешние модели лишь аппроксимируют крайне сложные процессы в целях ускорения вычислений с учетом объемов памяти ЭВМ. К тому же различные службы придерживаются собственных моделей со своими аппроксимациями.

Уменьшение шага сетки у модели. Первые модели прогнозирования погоды использовали сетку с шагом в сотни километров. В нынешних моделях этот шаг уменьшен до десятков километров, а ближайшая цель — 5 км. Чем меньше область, тем точнее моделирование, однако для получения такой точности нужны суперЭВМ (вспомним потребность биологии в больших вычислительных мощностях, получившую название биоинформатики). В построении суперЭВМ наметилось два подхода: массовая параллельная обработка и векторные вычисления. Процессоры с массовым параллелизмом соединяют большое число универсальных процессоров, каждый из которых осуществляет часть сложного вычисления, а отдельные результаты суммируются. Векторная обработка использует специализированные микропроцессоры, предназначенные для решения сугубо определенной задачи. В свое время американский разработчик ЭВМ Сеймор Крей собирал необыкновенно быстрые суперЭВМ на основе векторного вычисления. Хотя его подход перестал пользоваться спросом на родине, к нему решила прибегнуть японская компания NEC Вместо перехода на сетку с меньшим шагом для всего земного шара было решено, что качество прогноза у глобальных моделей можно улучшить при сетках с переменным шагом в особо важных областях.

Сборный прогноз. Сборный прогноз — метод, учитывающий чувствительность моделей к малым изменениям в начальных условиях. Данный подход связан с неоднократным прогоном модели, использованием различных начальных условий, чтобы посмотреть, как меняются выходные данные. Если, например, дождь выпадает в четырех испытаниях из десяти, можно прогнозировать 40 % вероятности дождя. Обычно модели запускают более 10 раз — часто это 17 прогонов, но порой может быть и 46. Одна из разновидностей данного подхода связана со сравнением результатов различных моделей с последующим прогнозированием на основе средневзвешенного значения. Опытные метеорологи используют ЭВМ, когда сверяют результаты, и порой отклоняют выданный ею прогноз исходя из собственного опыта.