ПРОБЛЕМА РАЗДЕЛЕНИЯ ИЗОТОПОВ В ПРОМЫШЛЕННОМ МАСШТАБЕ

ПРОБЛЕМА РАЗДЕЛЕНИЯ ИЗОТОПОВ В ПРОМЫШЛЕННОМ МАСШТАБЕ

ВВЕДЕНИЕ

10.9. Ко времени реорганизации Проекта атомной бомбы в декабре 1941 г. теория разделения изотопов посредством газовой диффузии была хорошо разработана. Поэтому можно было сформулировать технические проблемы, с которыми придется встретиться при постройке разделительной установки большого масштаба. Решение о размерах такой установки и о том, где ее строить, было вынесено только зимой 1942-43 г.г., т. е. примерно в то же самое время, когда были приняты решения о заводах для производства плутония.

ЦЕЛЬ

10.10. Основной целью промышленной газовой диффузионной установки являлось производство урана, содержащего примерно в 10 раз больше U235, чем в естественном уране, в количестве порядка нескольких граммов в сутки. Однако, было несомненно, что установка должна была быть достаточно гибкой и позволять производить, если потребуется, значительные изменения как в степени обогащения, так и в выходе конечного продукта.

РАБОЧИЙ ГАЗ

10.11. В качестве «рабочего газа», который может быть пригоден для использования в разделительной установке, был упомянут шестифтористый уран. Немаловажным его преимуществом является то, что фтор имеет только один изотоп, вследствие чего все молекулы UF6 данного изотопа урана имеют одинаковую массу. Это вещество высоко реактивно и при комнатной температуре и атмосферном давлении является твердым телом. Поэтому было срочно предпринято изучение других газообразных соединений урана. Для того, чтобы застраховать себя от неудач при этих поисках различных других, заменяющих UF6 газов, необходимо было продолжать работу по шестифтористому урану — разрабатывать методы производства и схемы циркуляции этого газа.

ЧИСЛО СТУПЕНЕЙ

10.12. Число ступеней в главном каскаде установки зависит только от желаемой степени обогащения и величины полного обогащения на ступень, достижимого с реально осуществимыми перегородками. По некоторым оценкам, требовалось несколько тысяч ступеней. Предполагалась также постройка специального регенеративного каскада на несколько сот ступеней; количество ступеней в нем зависит от того, сколько неотделенного U235 может быть допущено из экономических соображений в отвал.

ПЛОЩАДЬ ПЕРЕГОРОДОК

10.13. Мы видели, что полное количество газа, которое должно диффундировать через перегородку, очень велико по сравнению с количеством отбираемого конечного продукта. Скорость, с которой газ диффундирует через единицу площади перегородки, зависит от разности давлений по обе стороны перегородки и от ее пористости. Даже при допущении атмосферного давления по одну сторону и полного вакуума по другую и при наилучших достижимых значениях пористости, установка большого масштаба, как показывают расчеты, требует перегородок общей площадью во много акров.

КОНСТРУКЦИЯ ПЕРЕГОРОДКИ

10.14. При атмосферном давлении средний свободный пробег молекул имеет порядок десятитысячной доли миллиметра или десятой доли микрона. Чтобы обеспечить истинный «диффузионный» поток газа, диаметр бесчисленного множества отверстий в перегородке должен быть меньше одной десятой среднего свободного пробега. Следовательно, материал перегородки должен иметь миллионы отверстий диаметра меньшего или равного 0,01 микрона (4*10-7 дюйма) и почти не содержать отверстий с диаметром, превышающим эту величину. Отверстия не должны увеличиваться или закупориваться в результате прямой коррозии или пыли, возникающей при коррозии где-нибудь в системе. Перегородка должна быть способна противостоять «напору» в одну атмосферу. Перегородка должна легко изготовляться для того, чтобы можно было производить ее в больших количествах и однородной по качеству, К январю 1942 г. был сделан в небольших количествах и испытан на коэффициент разделения и пористость ряд различных типов перегородок. Некоторые казались очень обещающими, но ни одна перегородка не подвергалась таким испытаниям, которые могли бы установить ее пригодность для производства в больших масштабах и для промышленного использования.

НАСОСЫ И ПОТРЕБНАЯ МОЩНОСТЬ

10.15. Схема разделительной установки такова, что в любой ступени приблизительно половина поступающего вещества проходит через перегородку к следующей высшей ступени, в то время как другая половина возвращается обратно в предыдущую ступень. Продиффундировавшая половина имеет низкое давление и должна быть доведена до высокого давления перед подачей в следующую ступень. Даже непродиффундировавшая часть выходит при несколько более низком давлении, чем при входе, и не может быть подана обратно на низшую ступень без подкачивания. Таким образом, циркуляция всего количества газа в ступени (включая дважды количество, которое проходит через перегородку) должна быть осуществлена при помощи насосов.

10.16. Так как поток газа сквозь ступень значительно меняется с номером ступени в каскаде, количество и размеры насосов также сильно изменяются от ступени к ступени. Тип и производительность насоса, требуемого для данной ступени, зависит не только от веса подаваемого газа, но и от требуемого напора. Сделанные к этому времени расчеты принимали давление на входе в одну атмосферу и на выходе (т. е. со стороны низкого давления перегородки) в 0,1 атмосферы. Было подсчитано, что для установки требуются тысячи насосов мощностью в тысячи киловатт. Так как газ неизбежно нагревается при сжатии, то очевидно необходимо предусмотреть систему охлаждения. К началу 1942 г. было проведено значительное количество предварительной работы по насосам. Несмотря на сложность уплотнения валов, представлялось приемлемым применение центробежных насосов, но в дальнейших экспериментальных работах проектировалось применение совершенно герметичных насосов различных типов.

УТЕЧКА И КОРРОЗИЯ

10.17. Было ясно, что система циркуляции в целом, заключающая в себе насосы, перегородки, трубопроводы и клапаны, должна быть уплотнена на вакуум. Смазочные вещества или уплотняющие среды, необходимые для насосов, не должны реагировать с рабочим газом, не должен реагировать с рабочим газом также ни один из применяемых в системе материалов. Взаимодействие с рабочим газом (коррозия) будет приводить не только к засорению перегородок и к различным механическим дефектам, но и к поглощению (т. е. фактической потере) частично обогащенного урана.

РЕАЛЬНЫЙ И ИДЕАЛЬНЫЙ КАСКАДЫ

10.18. В идеальном каскаде производительность насосов должна меняться от ступени к ступени. Практически неэкономично предусматривать различный тип насосов для каждой ступени. Необходимо определить, какие отступления от идеального каскада можно допустить в интересах экономичности конструкции, удобства ремонта и т. д. (т. е. определить минимальное количество типов насосов); к подобным же компромиссам приходится прибегать и для других частей каскада.

ЗАГРУЗКА И ПУСКОВОЙ ПЕРИОД

10.19. При первом пуске установка должна проработать непрерывно некоторое время, пока не будет разделено достаточное количество вещества для того, чтобы установилось соответствующее распределение концентрации по ступеням. Только после того, как такая стабилизация достигнута, можно начать отбор необходимого продукта с последней (верхней) ступени. Как загрузка, так и требуемый пусковой период достаточно велики и являются, поэтому, важными проблемами.

ЭФФЕКТИВНОСТЬ

10.20. Повидимому, можно предположить только три типа потерь на установке, именно: потери вследствие утечки, потери от коррозии (т. е. химического соединения и разложения) и потери в отвал. Предполагалось, что утечка может быть сделана очень малой и что после начального периода работы потери от коррозии будут малы. Процент материала, теряемого в отвале, будет зависеть от числа регенерационных ступеней.

ДЕТАЛИ УСТАНОВКИ

10.21. Вопросы о том, в какой форме следует применять материал перегородки (в трубках или в листах, больших размеров или малых), как должно производиться смешивание, каким путем регулировать процесс и какие приборы для этого потребуются, еще требовали разрешения. Не было оснований считать их не разрешимыми, но несомненно было, что они потребуют как теоретического, так и экспериментального изучения.

10.22. К 1942 г. теория разделения изотопов посредством газовой диффузии была хорошо разработана, и стало ясным, что потребуется очень большая установка. Основными элементами оборудования этой установки являлись диффузионные перегородки и насосы. Перегородки и насосы, которые имелись в распоряжении в то время, по испытании оказались в общем не соответствующими требованиям; поэтому дальнейшая разработка насосов и перегородок была особенно необходима. Были и другие технические вопросы, требовавшие разрешения, а именно, коррозия, вакуумные уплотнения, приборы.