Солнечная система, какой мы ее знаем сегодня…
Солнечная система, какой мы ее знаем сегодня…
А теперь, прежде чем переходить к рассказу о гипотезах планетной космогонии последних лет, стоит подвести некоторый предварительный итог тому, что мы знаем сегодня о нашей солнечной системе. Накопились новые факты. Изменились методы исследований. Пополнился и список особенностей, сформулированных некогда П. Лапласом. Обо всем этом стоит рассказать хотя бы для того, чтобы иметь возможность составить собственный критерий оценки будущих гипотез.
Семейное положение Солнца и состав семьи. Сначала автор порывался написать коротко и ясно: «Солнце — многодетно!» Но потом остановился. Приняв на вооружение принцип объективного рассказа об эволюции взглядов на космогонию солнечной системы, правильно ли будет такое заявление? А если наше центральное светило и все планеты, спутники планет и астероиды, кометы и целые рои метеорных тел произошли одновременно из одного облака? Какие же они в таком случае «отцы и дети»?
И тогда пришлось остановиться на более осторожном определении: «Солнечное семейство многочисленно и разнообразно. Кроме самого Солнца — рядовой звезды, — система состоит из большого числа поименованных выше холодных тел, которые с завидным постоянством обращаются вокруг друг друга и центрального тела. Общее число их неизвестно, общая масса вычислена приблизительно и составляет десятые доли процента от массы солнечной. Кроме того, не исключено, что по сей день еще не все члены солнечного семейства зарегистрированы в „учетной книге“ земной астрономии».
Таким образом, на вопрос о составе семьи (как и на вопрос о семейном положении) можно дать пока ответ весьма неопределенный.
Где граница солнечной системы? К сожалению, и на этот вопрос однозначный ответ дать трудно. Казалось бы, наиболее правильно таковой считать орбиту Плутона, самой далекой планеты. Среднее расстояние от Солнца до него примерно 40 астрономических единиц — а. е. (напомним, что 1 а. е. равна 149 миллионам 504 тысячам километров). Но титул «последней планеты» у Плутона вовсе не раз навсегда установленный. Не исключено, что за его орбитой на прочной цепи солнечного притяжения гуляет еще планета, а то и планеты. Обнаружить их пока невозможно. Кроме того, мы уже знаем, что в семейство Солнца входят кометы. А по расчетам, самые дальние точки их орбит — афелии — лежат на расстояниях около 150 тысяч астрономических единиц от нашего светила. Это существенно раздвигает границы солнечной системы, но тоже не дает ее предела. На какое же расстояние простирается влияние Солнца? Вопрос не такой простой. Ведь нужно учитывать еще и влияние всех 100 миллиардов звезд нашей Галактики.
Впрочем, тут есть пути к упрощению. Если соединить все звезды в одну тяготеющую точку в центре Галактики и рассматривать ее вместе с Солнцем и обращающимся вокруг Солнца телом малой массы — типа космического корабля, то получится вариант задачи трех тел. Он был решен американским математиком Георгом Хиллом. И то максимальное расстояние, на котором может двигаться тело малой массы, оставаясь еще спутником одной из притягивающих масс, называется «сферой Хилла» для этой массы.
Так, космический корабль, выброшенный за пределы всех планетных орбит, будет обращаться вокруг Солнца до тех пор, пока его расстояние от светила не превысит 230 тысяч астрономических единиц. Это и есть радиус «сферы Хилла» для Солнца. За ее пределами большая доля гравитационного влияния на корабль будет принадлежать тяготеющей массе всех звезд Галактики, собранных нами в ее центре в единую точку.
Радиус «сферы Хилла» очень интересная величина. Читатель, склонный к раздумьям, может с удовольствием поразмышлять над ней, имея в виду, что расстояние до ближайшей к Солнцу звезды — альфы Центавра — порядка 280 тысяч астрономических единиц. То есть, она находится чуть-чуть за пределами «сферы Хилла». А если бы не было этого «чуть-чуть»? Впрочем, такие предположения уже выходят за рамки нашей книжки.
Итак, примерная граница солнечной системы установлена. Что еще нужно знать, чтобы начать оценивать космогонические гипотезы?
Особенности солнечной системы. Перечисляя основные особенности солнечной системы, П. Лаплас писал: «Планеты движутся вокруг Солнца в одном направлении и примерно в одной плоскости».
Пожалуй, сегодня эта особенность не должна выглядеть столь категорично. Наклон плоскости орбиты Меркурия к экватору Солнца 7 градусов, а орбита Плутона отклоняется на 17 градусов 8 минут.
Затем П. Лаплас требовал объяснить, почему все спутники движутся вокруг своих планет в том же направлении, что и планеты вокруг Солнца.
С этим пунктом его списка особенностей дела обстоят хуже всего. С тех пор ассортимент спутников планет сильно пополнился. И вот, пожалуйста: четыре спутника Юпитера, не имеющие названий и обозначенные просто римскими цифрами VIII, IX, XI и XII, имеют обратное направление обращения.
Можно, конечно, успокаивать себя тем, что внешние спутники гигантской планеты — астероиды, захваченные ее полем притяжения. Но как быть тогда с Фебой, девятым спутником Сатурна, открытым В. Пикерингом в 1898 году? Феба тоже обращается в обратном направлении, но это наверняка не астероид. Скорее уж это кометное ядро.
Имеют обратное направление обращения и пять спутников Урана. Впрочем, Уран сам сплошная загадка для космогонии. Он один «лежит» на своей орбите, да еще и «головой вниз». Плоскость его экватора составляет угол около 98 градусов с плоскостью орбиты.
Непонятной до сих пор остается и причина, по которой обратное направление имеют обращающиеся вокруг Нептуна спутники Тритон и Нереида.
По мнению П. Лапласа, вращение всех планет и Солнца вокруг своих осей происходит в одну и ту же сторону, а плоскости их экваторов имеют слабый наклон к плоскости их орбит.
Увы, это замечание тоже нуждается в поправках, так как Уран и Венера вращаются в обратную сторону, а о плоскости экватора Урана мы уже говорили.
Эксцентриситеты известных во времена П. Лапласа орбит планет и спутников были очень малы. Но сегодня это утверждение не годится ни для Меркурия, ни для Плутона. Их эксцентриситеты соответственно равны 0,20562 и 0,24864. Если же сравнивать между собой орбиты спутников, то и здесь особого единообразия не наблюдается. Орбиты внешних спутников Юпитера достаточно вытянуты. А уж об орбите Нереиды и говорить нечего — она напоминает собой путь настоящей кометы. Этот спутник приближается к Нептуну на 1 миллион 600 тысяч километров и удаляется от него на 9 миллионов 600 тысяч километров.
Лишь последняя особенность, сформулированная П. Лапласом, остается в неприкосновенности: «Орбиты комет имеют большие эксцентриситеты и любые углы наклона к плоскостям планетных орбит». Ее объяснению посвящены специальные гипотезы.
Особенности особенностей. Космогонисты давно ощущали потребность в создании перечня фундаментальных фактов, объяснение которых имело бы значение не только для происхождения одного солнечного семейства, но и для планетных систем любых других звезд. Задача эта сложности невероятной. Ведь пока известна-то всего одна планетная система. И кто может гарантировать, что ее особенности явятся законом для других систем? Тем не менее, в 1948 году голландский астроном Д. Тер Хаар опубликовал один из таких перечней, разделив все известные факты на четыре группы.
В первую входили вопросы, касающиеся закономерностей орбит. Например, почему направления обращений планет и Солнца одинаковы? Почему у орбит планет и их спутников такие малые эксцентриситеты? Наконец, почему плоскости планетных орбит так близко совпадают с экваториальной плоскостью Солнца?
Ко второй группе фактов Д. Тер Хаар отнес закономерности изменения расстояния планет от Солнца. Этим требованием он откликнулся на давние усилия многих астрономов подвести теоретическую базу под любопытный чисто эмпирический закон Тициуса — Боде. Это известное правило гласит, что расстояние от Солнца до любой планеты в астрономических единицах можно приближенно найти по формуле Rn = 0,4 + 0,075
Третья группа фактов включала в себя вопросы, касающиеся причин деления планет на две группы: планеты земного типа и планеты-гиганты. Почему небесные тела обеих групп так резко отличаются друг от друга?
И наконец, четвертая группа фактов касалась рокового распределения момента количества движения: у планет — 98 процентов, у Солнца — 2 процента.
Не все специалисты согласились со списком Д. Тер Хаара. Советские астрономы В. Фесенков и Б. Крат предложили расширить опубликованный перечень фактов, добавив в него новые пункты.
Однако никакой, даже самый подробный, список не в состоянии перечислить все загадочные особенности, нуждающиеся в объяснении. Начавшаяся запуском искусственного спутника Земли в 1957 году эра исследования космоса с помощью спутников и межпланетных кораблей каждый день приносит новую информацию. Сегодня космогонические гипотезы должны суметь объяснить не только отличие физических особенностей планет земной группы от планет-гигантов, но и объяснить особенности в их движениях. Почему, например, Меркурий и Венера вращаются так медленно, тогда как Юпитер, Сатурн, Уран и Нептун крутятся чрезвычайно быстро?
Не нашел пока удовлетворительного объяснения и факт обилия астероидов и метеорных тел в пределах солнечной системы. Что это — остатки «строительного мусора» или осколки некогда существовавшей и разлетевшейся на осколки планеты Астероидии? Обе гипотезы имеют своих сторонников и противников.
Рядом стоит и загадка колец Сатурна. Как и в результате каких действий удалось природе создать это уникальное явление?
Впрочем, чтобы отыскать особенности и загадки, не нужно даже особенно напрягать зрение. Уж, кажется, Луна известна всем и каждому. Там побывали даже люди. Но вот что такое Луна — спутник или самостоятельное небесное тело, пока не известно никому. Ведь система Луна — Земля уникальна. Такого относительно крупного спутника нет больше ни у одного из «родственников» Земли. Как же представить себе тайну его происхождения?
Фактов множество. Из них можно, наверное, составить целую книгу, назвав ее в духе прошедшего века — «Загадки и нерешенные вопросы планетной системы» или, наоборот, в современном стиле — «Солнечная система вчера, сегодня, завтра».
Сейчас исследование солнечной системы вступило в новую фазу — фазу непосредственного изучения. Открыты радиационные пояса Земли и неожиданные подробности строения атмосфер Венеры и Марса. Радиоволны принесли на Землю новую информацию о Меркурии и Юпитере. Приборы, установленные на космическом аппарате, позволили уточнить массу Юпитера и подтвердили то, что эта планета излучает примерно в 2,5 раза больше тепловой энергии, чем получает ее от Солнца.
Все это должно быть учтено космогоническими гипотезами. Однако получается, что новая информация пока не столько способствует созданию новых гипотез, сколько разрушает старые. Одну за другой, одну за другой…
Вот, пожалуй, описанию именно этого процесса и будут посвящены следующие разделы планетной космогонии.
Данный текст является ознакомительным фрагментом.