Солнце без гипотез и теория «термояда»
Солнце без гипотез и теория «термояда»
Что же мы знаем о Солнце сегодня? Давайте составим нечто вроде медицинской карты на наше светило; примерно такой, какие в бесчисленном количестве составляют на нас с вами в поликлиниках вместо того, чтобы просто отправить в санаторий. Только факты, без всяких там домыслов и гипотез.
Ну, прежде всего угловой диаметр и расстояние до Земли. Обе величины нетрудно измерить. Затем количество солнечной лучистой энергии, падающей на единицу земной поверхности в единицу времени. Для этого измерения лучше всего отправиться, конечно, на экватор. Но если на экватор не хотите, опыт можно произвести и дома в полдень… Дальше, сравнивая цвет Солнца с цветом раскаленного вещества на Земле, мы косвенно можем судить о поверхностной температуре светила. А, изучив возраст самых старых земных пород, можно примерно назвать нижнюю границу возраста Солнца. Ведь считать, что Земля старше Солнца вряд ли целесообразно. Если добавить еще и период обращения Земли (или любой другой планеты), который понадобится для определения массы Солнца, и группу данных, определяющих наше светило как члена Галактики, то, пожалуй, все наблюдаемые характеристики этим и исчерпываются. Можно бы, конечно, еще добавить, например, скорость вращения Солнца, вычисленную по скорости перемещения его пятен, но тут есть одна неприятность. Во-первых, пятна на солнечном диске видны только в поясе от +40 градусов до –40 градусов гелиографической широты. В более высоких широтах их почти не заметно. Во-вторых, вращается-то Солнце на разных уровнях по-разному: на экваторе — быстрее, ближе к полюсам — медленнее. Какую же скорость принять в качестве основной?
Теперь давайте сведем наблюдаемые характеристики Солнца в таблицу.
Наблюдаемые характеристики Солнца
(по П. Куликовскому)
Угловой диаметр … 31?59?26
Расстояние от Земли … (149 504 000 ± 17 000) км
Солнечная постоянная … 1,39 · 106 эрг/сек см2
Температура поверхности … 6000°К
Возраст … (4,5—6) · 109 лет
Период обращения Земли (звездный, или сидерический, год) … 365,25636 суток
Наклон солнечного экватора к эклиптике … 7°15?
Скорость движения Солнца относительно окружающих его звезд … 19,5 км/сек
Расстояние Солнца от центра Галактики … 8000 парсек = 2450 световых лет
Скорость движения Солнца вокруг центра Галактики … 250 км/сек
Период обращения Солнца вокруг центра Галактики … 1,8 · 108 лет
По этим данным, произведя некоторые вычисления, можно составить еще одну таблицу. Между прочим, гораздо более важную, чем первая, с точки зрения астрофизиков.
Вычисленные характеристики Солнца
(по П. Куликовскому)
Масса … 1,983 · 1033 г
Средняя плотность … 1,41 г/см3
Общая радиация (светимость) … 3,78 · 1033 эрг/сек
Диаметр … 1 390 600 км
Объем … 1,412 · 1015 км3
Ускорение силы тяжести на поверхности Солнца … 2,738 · 104 см/сек2
Критическая скорость или скорость освобождения … 619,4 км/сек
И наконец, для сравнения Солнца с остальными звездами астрофизики ввели еще несколько характеристик.
Сравнительные характеристики Солнца
(по П. Куликовскому)
Звездная визуальная величина … —26mm,80 ± 0,03
Абсолютная фотовизуальная звездная величина … +4m,96
Спектральный класс … dG2
Буква m в показателе степени называется звездной величиной, определяющей блеск звезды.
Буква d перед спектральным классом говорит о том, что наша звезда — карлик.
Конечно, это далеко не все характеристики. Да и выбраны они автором достаточно произвольно.
Но, после того как они приведены, не худо бы и пояснить, чем они так уж важны в книге, посвященной вопросам космогонии. Именно космогонии, а не астрофизики и не звездной астрономии. А вот чем.
Минимальный возраст — это время, за которое наше светило практически не менялось. Порукой тому свидетельство земных пластов.
Средняя плотность — 1,4 г/см3 — говорит о том, что солнечный шар состоит из довольно разреженной субстанции.
А ускорение силы тяжести — в 28 раз большее, чем на Земле, — свидетельствует о внушительном внешнем воздействии. И сразу возникает вопрос о природе небесного тела, которое может существовать так долго и в таких условиях. Какое оно? Твердое? Нет! Плотность мала. Жидкое? Тоже нет! Может быть, газообразное? А это очень может быть. Ведь говорят же физики, что от немедленного сжатия наше светило может удержать только внутреннее тепловое давление. Возникает же оно за счет теплового движения частиц солнечного вещества. Значит, Солнце — газовый шар, да еще и хорошо нагретый.
Смотрите, какой необыкновенно оригинальный вывод нам удалось сделать…
Прекрасно! Теперь можно задуматься и о тех реакциях, которые столь долго и стабильно поддерживают жизнь нашего светила, а в том числе и наше с вами бренное существование. Предположение Г. Гельмгольца об энергии за счет сжатия не годится. Солнце продержалось бы на ней в существующем состоянии не более нескольких миллионов лет. Этого мало. Не стоит говорить и о химической энергии. Тут срок еще меньше. Тогда какая же?
В неофициальной части истории физики сохранился один эпизод. Рассказывают, что однажды два приятеля — развеселые студенты-физики из славного Геттингенского университета жарким солнечным днем гуляли по тенистому парку. Переходя от дерева к дереву, они со смехом говорили о том, что в такую погоду не исключен солнечный удар кое у кого из профессоров, что само по себе не так уж и плохо, ибо тогда завтра отменят лекции. Однако настоящий физик даже о солнечном ударе не может говорить, забывая о физике. Сегодня трудно восстановить, кому из студентов первому пришла в голову идея об истинном источнике энергии пылающего над головой Солнца. Во всяком случае, вряд ли кто обвинит нас, если мы домыслим сцену…
— Клянусь рефератом, который нужно завтра представить, это… — Фриц Хоутерманс, а именно так звали одного из студентов, показал рукой на Солнце, — это не костер из буковых поленьев.
— Пожалуй, — подхватил его приятель, — он бы давно погас, и сегодня не было бы такой сумасшедшей жары.
Приятеля Ф. Хоутерманса звали Аткинсон. Он только что приехал из Кембриджа, где все были увлечены удивительными опытами Э. Резерфорда по атомным превращениям. Может быть, также в шутку высказался он за то, что кавендишские атомные превращения, рождающие столь горячие споры, и жаркие процессы внутри Солнца должны иметь какую-то связь! Ф. Хаутерманс подхватил идею.
— Конечно, легкие элементы сливаются, образуют более тяжелые, а освободившаяся энергия печет нам головы…
Может быть, именно с этого случайного разговора и началась серьезная работа обоих физиков над проблемой теории термоядерных процессов в недрах Солнца. Над ней сломано было немало зубов и копий. Предположить, что энергия Солнца обязана слиянию атомов водорода и образованию более тяжелого гелия, было слишком мало. Следовало доказать, что эта гипотеза имеет под собой твердую почву. Ведь для синтеза легких ядер нужна чудовищная температура. Обеспечивает ли Солнце требуемые условия при каких-то 6 тысячах градусов на поверхности?
«Что значит каких-то? — вправе обидеться читатель, знакомый с достижениями техники электро- и газовой сварки. — Нам бы такую!» Так-то оно так. Нам-то бы неплохо, а вот термоядерным реакциям ни к чему. «Термояду» при 6 тысячах градусов холодно. Реакции не желают при этом проистекать. А как же быть с источником солнечной энергии?..
Тут к этой проблеме совсем с другого бока подобрался Артур Стенли Эддингтон, замечательный английский астроном, астрофизик, сделавший очень много как в самой науке, так и в ее популяризации.
После того как Петр Николаевич Лебедев открыл и измерил световое давление, никто из физиков в общем-то не знал, что с этим давлением делать. Многие считали, что столь ничтожная сила не может играть существенной роли в жизни космических небесных объектов. Но А. Эддингтон построил именно на ней свою теорию равновесия звезд. Он одним из первых пришел к мысли, что там, где энергия излучается в космических масштабах, световое давление, вкупе с обычным газовым давлением, могут уравновесить гигантскую силу тяжести, развиваемую огромной массой звезды. Работая над своей теорией, А. Эддингтон подумал: а не влияет ли масса вообще на физическое состояние раскаленных газовых шаров, которые мы называем звездами? Эта мысль окрепла, превратилась в убеждение в конце концов, подтвержденная теорией и наблюдениями, стала важным космогоническим законом.
Не стоит перечислять все научные работы президента Королевского астрономического общества А. Эддингтона. Многие из них выходят за рамки, ограниченные темой нашей книги. Для нас важно знать, что, пользуясь выведенными соотношениями и зная массу, а следовательно, и тяготение Солнца, А. Эддингтон рассчитал давление, необходимое для уравновешивания сил тяготения, а затем и температуру в недрах нашего светила, способную обеспечить требуемое давление. Получилась поистине астрономическая цифра в 15 миллионов градусов. Читатель, даже привыкший к масштабности шкалы цифр наших дней, поневоле должен затаить дыхание. Особенно если учесть, что согласно последним расчетам уже наших дней эта цифра поднялась еще выше и перевалила за 21 миллион.
Расчеты А. Эддингтона примирили физиков с астрономами.
Теперь тепла хватало, чтобы «высидеть» реакцию термоядерного синтеза. Оставалось только выбрать подходящий тип этой реакции. Дело в том, что написать их можно довольно много. Но поскольку все данные спектрального анализа в один голос твердили, что Солнце почти целиком состоит из водорода и только чуть-чуть из гелия, то немецкий физик Ганс Альбрехт Бете, работавший с 1939 года в США, попробовал приспособить для Солнца реакции термоядерного синтеза гелия из водорода через промежуточные превращения. Написал. Проверил. Вроде подходило. Скорости, с которыми реакции протекали, вполне обеспечивали общее количество излучения. Тогда Г. Бете переписал свои уравнения и скромно признался коллегам, что, похоже, он открыл единственно пока возможный источник солнечной энергии.
Коллеги удивились тому, что это не пришло в голову им самим. Коллеги восторгались тем, что в работе Г. Бете остались возможности дальнейшего совершенствования теории и бросились наперегонки реализовать эти возможности.
Сегодня представления Г. Бете лежат в основе классической теории звездной эволюции. Они разработаны настолько тщательно, что нужно быть очень смелым человеком, чтобы поднять голос против. Многие предсказания теории получили подтверждение наблюдателей. А сам Г. Бете в 1967 году получил Нобелевскую премию.
Теперь самое время задать главный вопрос, после которого должны исчезнуть последние сомнения: «А как эксперимент, непосредственный эксперимент, подтвердил гипотезу Г. Бете? Ведь водородные бомбы взрывались над Землей уже не раз и над, и под…»
Увы! Как говорится, «прямых экспериментальных доказательств термоядерной природы солнечной энергии пока нет». Более того, теоретики уже рассчитали не одну, а несколько непротиворечивых моделей Солнца. Факт довольно удручающий. Лучше бы одну. Но для этого нужно твердо знать, что у Солнца внутри. А пока, пока какая бы то ни было точная информация о солнечном ядре отсутствует. Ведь и герр Г. Бете, предлагая свою глубокую теорию, основывался только на «поверхностных» данных. Имеются, конечно, в виду данные спектрального анализа. Чего бы, кажется, не отдали астрофизики за то, чтобы хоть одним глазом заглянуть внутрь нашего светила…
Если Г. Бете прав, то обстановку внутри Солнца представить себе можно. Ядерные реакции в центре порождают мощное гамма-излучение, которое, пробиваясь сквозь толщу солнечного вещества, преобразуется в более длинноволновое — рентгеновское. Однако недра нашего светила одинаково непрозрачны как для гамма-, так и рентгеновского излучения. И потому последнее, поднимаясь все выше и ближе к поверхности, претерпевает новое превращение — переходит в еще более длинноволновое излучение видимого света. Лишь после этого лучи покидают Солнце и через восемь с небольшим минут любезно предоставляют земным наблюдателям всю заложенную в них информацию. Но только о той области, которая их породила, — о поверхности Солнца.
Как же тут быть? Световые лучи не годятся, радиоизлучение и рентгеновские лучи, которые приходят от нашего светила к нам, тоже не несут информации о глубоких недрах. И все-таки есть выход! Нутряные реакции порождают еще один вид излучения — нейтринное. А для нейтрино что Солнце, что Земля, что пустой космос — все едино. Они почти беспрепятственно сквозь них проходят, ни с чем не реагируя. Может быть, попробовать поймать их?
В 1964 году американский физик Р. Дэвис приступил к таким опытам. Работники сферы бытового обслуживания с ума бы посходили от зависти, знай они, сколько канистр с бесцветной жидкостью, применяемой для чистки одежды, были опущены в одну из шахт отдаленных золотых приисков. Однако Р. Дэвис не собирался устраивать подпольную, точнее, подземную химчистку. Громадная цистерна, наполненная тетрахлорэтиленом, должна была задерживать солнечные нейтрино. А под землю полезли физики, чтобы избежать ненужного фона от других частиц.
Идея эксперимента заключалась в поимке солнечных нейтрино, которые могли бы рассказать о процессах внутри Солнца. К сожалению, несмотря на три года работы и непрерывного совершенствования методики измерений нейтринный детектор (или «нейтринный телескоп») упрямо показывал поток частиц в десять раз меньший, чем ожидалось по теоретическим расчетам. Было от чего прийти в уныние. Говорят, желая утешить Р. Дэвиса, рабочие говорили: «Не огорчайтесь, док. Нынешнее лето было таким облачным…» Однако шутки помогали мало. Налицо было вопиющее противоречие опыта и признанной теории. Теоретики, правда, недолго унывали. Они тут же предложили множество спасительных гипотез, среди которых, конечно, были такие, что таили в себе нарушения и некоторых фундаментальных законов природы либо исходили из столь ультрановых допущений о существовании явлений, которых никто и никогда не наблюдал. Авторов этих работ не смущало, что такого рода гипотезы среди серьезных специалистов успехом не пользовались.
Простой и многообещающий путь к решению проблемы нейтринного дефицита предложил американский астрофизик У. Фаулер из Калифорнийского технологического института. Он обратил внимание коллег прежде всего на то, что между потоком нейтрино и световым потоком (потоком фотонной светимости, если выражаться научно) существует в принципе большое различие. Частицы нейтрино не задерживаются солнечным веществом и потому, родившись в недрах светила, они через восемь с небольшим минут уже могут быть в шахте в цистерне с жидкостью для химчистки. И совсем другое дело — свет. Пока та же волна термоядерной энергии, породившая только что пойманные нами нейтрино, доберется из центра Солнца до его поверхности и родит фотоны, пройдет довольно много времени. Физики называют его «временем Кельвина — Гельмгольца». О длительности его единой точки зрения нет. У. Фаулер считает его равным примерно тридцати миллионам лет. Другие специалисты убеждены, что оно порядка на три меньше… Но так или иначе, а появление фотонов должно довольно сильно отставать от появления нейтрино, рожденных одним и тем же процессом.
Конечно, солнышко наше — звезда довольно спокойная («тьфу, тьфу, чтобы не сглазить»). Но и у него в центре могут происходить перемены. Какие? У. Фаулер говорит, например: перемешивание. Да, довольно быстрое перемешивание внутренних горячих и наружных более холодных слоев. Как только оно произойдет, температура в центре Солнца падает. А количество высокоэнергетических нейтрино очень сильно зависит от температуры. Значит, и поток нейтрино резко сокращается. Со временем уменьшится, конечно, и световой поток. Но далеко не сразу…
Получается, что, произойди такое перемешивание в солнечном ядре, через считанные минуты земные приборы должны зафиксировать уменьшение потока нейтрино. А свет от Солнца еще будет долгое время литься нам на головы в неизменном количестве.
На страницах журнала, в котором У. Фаулер опубликовал свою гипотезу, еще не успела высохнуть типографская краска, а специалисты исследовательских групп США и Англии, в распоряжении которых были компьютеры и соответствующие программы для расчета процессов в звездах, уже принялись считать. Это говорит о том, что вопрос о солнечных реакциях стоит сейчас чрезвычайно остро.
Результаты расчетов пока оценивать рано. Во многом они расходятся друг с другом. Но то, что идея У. Фаулера плодотворна, сомнений нет ни у кого.
Правда, может возникнуть и такой вопрос: а почему бы вдруг недрам солнечным начать перемешиваться? Пока большинство астрофизиков на эту тему предпочитает не высказываться. Но вот совсем недавно в одной из статей, подписанной теоретиками из Кембриджского института Ф. Дилком и Д. Гу, гипотеза возможных причин перемешивания все-таки была предложена. Смысл ее заключался в том, что примерно за каждые 250 миллионов лет «спокойной жизни» в недрах Солнца накапливается слишком много «шлака». Химический состав вещества настолько изменяется под действием идущих там реакций, что происходит срыв, перемешивание, которое продолжается в течение примерно миллиона лет или меньше. Естественно, что после такого события, как после инфаркта, Солнцу нужно примерно до десяти миллионов лет на то, чтобы прийти в себя, после чего снова наступает период спокойной жизни.
Расчеты на ЭВМ показывают, что во время перемешивания должно происходить резкое увеличение потока нейтрино, после чего его интенсивность также резко спадает и потом в течение длительного срока постепенно нарастает снова, подбираясь к нормальному уровню.
А теперь представим себе, что сравнительно недавно в недрах Солнца произошло перемешивание. Наши приборы должны регистрировать уменьшившийся поток нейтрино. (Как это было в опыте Р. Дэвиса.) А свет? Свет мы еще долгие годы будем получать от Солнца прежний, пока результаты процесса перемешивания не скажутся на внешней оболочке светила. Но наступит время, когда его количество начнет уменьшаться, а поток нейтрино к той поре, возможно, восстановится.
Если согласиться с тем, что описанное явление в жизни Солнца периодически повторяется, а от количества света, как известно, зависит жизнь на Земле, то не поискать ли в прошлом каких-либо указаний на то, что такие или похожие явления уже были?
Оказалось, можно! Каждые 250 миллионов лет на поверхности нашей планеты наступают ледниковые периоды. Предположения о причинах, их вызывающих, существуют разные. Правда, увязывая Великие Обледенения с циклами перемешивания, специалисты наталкиваются на некоторые затруднения. Но тут виновата прежде всего неоднозначность «времени Кельвина — Гельмгольца», о котором мы уже говорили, хотя есть основания считать эти затруднения временными. А пока гипотеза «перемешивания» признается далеко не всеми, и проблемы, с нею связанные, находятся в состоянии дискуссии.
Пока теоретики спорят, развивающаяся наука на базе новой техники подбрасывает им все новые и новые факты. Наблюдая солнечные вспышки, экипаж «небесной лаборатории» «Скайлэб» обнаружил любопытное явление. Оказалось, что одна солнечная вспышка может вызвать другую на ином удаленном участке солнечной поверхности. При вспышке образуется гриб, подобный грибу ядерного взрыва. Во время одного из сеансов наблюдения астронавты неожиданно увидели в короне Солнца огромный «пузырь». Скорее всего что он возник как результат мощной вспышки на другой, невидимой с Земли солнечной стороне.
Фотографируя протуберанцы, астронавты «Скайлэба» и советские космонавты с «Салюта-4» обнаружили немало нового и пока не объяснимого в деятельности нашего светила. Однако пока мы должны констатировать, что никаких прямых экспериментальных подтверждений, что в его недрах бушует именно термоядерный пожар, нет! Но ведь все теории построены именно на этом предположении. Как же относиться к ним? Вот так и относиться, не принимая ничего на веру. Наука и вера — понятия несовместимые. Впрочем, тут уж автор начинает эксплуатировать рецепты «законов Паркинсона», гласящие, что «любое утверждение становится истиной после 1227 повторений». Почему именно после 1227? А попробуй, проверь…
Данный текст является ознакомительным фрагментом.