ЭЛЕКТРИЧЕСКИЕ ОСЦИЛЛЯТОРЫ*

ЭЛЕКТРИЧЕСКИЕ ОСЦИЛЛЯТОРЫ*

Мало было открыто таких областей, которые оказались столь урожайными как токи высокой частоты. Их необыкновенные свойства и эффектность демонстрируемых ими явлений сразу же вызвали всеобщее внимание. Научные люди заинтересовались исследованием их, инженеры были привлечены их коммерческими возможностями, а врачи увидели в них долгожданные средства для действенного лечения телесных болезней. Со времен публикации моих первых исследований в 1891 сотни томов были написаны по этому предмету, и множество неоценимых результатов получено с помощью этого нового фактора. Эта область находится еще только во младенчестве, будущее хранит несравненно большее.

С самого начала я чувствовал необходимость сделать эффективный аппарат, отвечающий быстро растущим потребностям, и в течение восьми лет после моих первых сообщений я разработал не меньше пятидесяти типов этих трансформаторов или электрических осцилляторов, каждый из которых был законченным во всех подробностях и усовершенствован до такой степени, что я не смог бы сколько-нибудь существенно улучшить ни один из них сегодня. Если бы мной двигали практические соображения, я мог бы создать большой и прибыльный бизнес, параллельно оказывая всему миру важную услугу. Но сила обстоятельств и постоянно растущие перспективы еще больших достижений обратили мои усилия в другом направлении. И получается так, что скоро на рынок выйдут инструменты, которые, как это ни странно, были полностью завершены двадцать лет назад!

Эти осцилляторы предназначались специально для работы с постоянными и переменными осветительными цепями и для генерации затухающих и незатухающих осцилляции или токов любой частоты, объема и напряжения в широчайших пределах. Они компактны, автономны, не требуют никакого обслуживания в течение длительных периодов времени и оказываются очень удобными и полезными для таких разнообразных целей, как беспроводная телеграфия и телефония; преобразование электрической энергии; получение химических соединений путем сплавления и соединения; синтез газов; производство озона; освещение; сварка; муниципальная, больничная и бытовая санитария и стерилизация, и множество других применений в научных лабораториях и промышленных организациях. Хотя эти трансформаторы никогда ранее не описывались, общие принципы, лежащие в их основе, были полностью изложены в моих печатных статьях и патентах, в особенности за 22 Сентября 1896, и думается поэтому, что прилагаемые фотографии нескольких типов вместе с кратким объяснением дадут всю необходимую информацию.

Существенными частями такого осциллятора являются: конденсатор, катушка самоиндукции для зарядки его до высокого потенциала, контроллер цепи, и трансформатор, который возбуждается осцилляторными разрядами конденсатора. В нем есть по меньшей мере три, а обычно четыре, пять или шесть, согласованных цепей и регулировка, исполняемая несколькими способами, наиболее часто просто с помощью регулировочного винта. Пр и благоприятных обстоятельствах достижима эффективность до 85 %, то есть, такой процент подаваемой энергии можно получить во вторичной обмотке трансформатора. Хот я главное достоинство этого рода аппаратов очевидно обусловлено удивительными свойствами конденсатора, особые положительные характеристики достигаются в результате сочетания цепей с соблюдением правильных гармонических отношений и минимизации потерь на трение и других потерь, что и было одной из главных целей конструкции.

В целом, приборы эти можно разделить на два класса: один, в котором контроллер цепи содержит твердые контакты, и другой, в котором замыкание и размыкание производится ртутью. Рисунки с 1 по 8 включительно относятся к первому, а оставшиеся — ко второму классу. Первые дают заметно большую эффективность из-за того факта, что сопутствующие потери при замыкании и размыкании сведены к минимуму и резистентная составляющая коэффициента затухания очень мала. Вторые предпочтительны для тех целей, где важно получение большего выхода и большего количества прерываний в секунду. Работа мотора и конечно контроллера цепи потребляет определенное количество энергии, которое, однако, становится все менее значимым с ростом мощности машины.

На Рис. 1 показана одна из самых ранних форм осциллятора, сконструированная для экспериментальных целей. Конденсатор содержится в квадратном ящике из красного дерева, на которой смонтированы самоиндукционная или зарядная катушка намотанная, как будет показано, в два секции соединенные параллельно или последовательно, в зависимости от того, какое напряжение в подающей сети, ПО или 220 вольт. Из коробочки торчат четыре латунных колонны, которые поддерживают пластину с пружинными контактами и регулировочными винтами, а также две массивные клеммы для подключения к первичной обмотке трансформатора. Две из этих колонн служат в качестве контактов конденсатора, а пара других соединяют клеммы выключателя спереди от катушки самоиндукции с конденсатором. Первичная обмотка состоит из нескольких витков медной полосы, к концам которой припаяны короткие штыри, входящие в соответствующие клеммы. Вторичная сделана из двух частей, намотанных так, чтобы насколько возможно уменьшить распределенную емкость и в то же время обеспечить, чтобы катушка выдерживала очень высокое напряжение между ее клеммами в центре, которые соединены с пружинными контактами на двух резиновых колоннах, выступающих из первичной обмотки. Соединения цепи могут слегка варьироваться, но обычное их устройство схематически показано в Electrical Experimenter за Май на странице 89, и относится к моему осцилляторному трансформатору, фотография которого приведена на странице 16 в том же номере. Работа его проходит следующим образом: Когда выключатель включается рубильник, ток из цепи питания устремляется через катушку самоиндукции, примагничивая железный сердечник внутри и рассоединяя контакты контроллера. После этого индуцированный ток высокого напряжения заряжает конденсатор, и после замыкания контактов аккумулированная энергия высвобождается через первичную обмотку, вызывая нарастание длинной последовательности осцилляции, которые возбуждают согласованную вторичную цепь.

Устройство показало себя весьма работоспособным при проведении лабораторных экспериментов всех видов. Например, при изучении явления импеданса трансформатор был убран и в клеммы был вставлен согнутый медный прут. Он часто заменялся большой кольцевой петлей для демонстрации индуктивного эффекта на расстоянии или для возбуждения резонансных цепей в различных исследованиях и измерениях. Трансформатор, подходящий для любого желаемого эксперимента, можно легко сымпровизировать и подключить к клеммам, и таким образом было сэкономлено много времени и труда. Вопреки тому, что было бы естественно ожидать, с контактами возникало довольно мало проблем, хотя токи через них были чрезвычайно сильные, так как, при наличии соответствующих условий резонанса, большой поток возникает только когда цепь замкнута, и никаких разрушительных дуг развиться не может. Изначально я использовал платиновые и иридиевые концы, но потом заменил их на meteorite и в конце концов на вольфрам. Последний вариант удовлетворял наилучшим образом, обеспечивая работу в течение многих часов и дней без прерываний.

Рис. 2 показывает небольшой осциллятор, разработанный для определенных научных целей. Основополагающая идея состояла в том, чтобы добиться огромной производительности в течение кратковременных интервалов, после каждого из которых следует сравнительно длинный период бездействия. С этой целью использовались большая катушка самоиндукции и быстродействующий прерыватель, и вследствие такой конструкции конденсатор заряжался до очень высокого потенциала. Были получены внезапные вторичные токи и искры большого объема, особенно подходящие для сварки тонких проводов, вспышек ламп накаливания или сваривания нити ламп-вспышек, зажигания взрывчатых смесей и прочих подобных прикладных целей. Этот прибор был также адаптирован для работы от батареи, и в этом виде был очень эффективным воспламенитель для газовых двигателей, на что патент за номером 609,250 и был получен мной 16 Августа 1893.

На Рис. 3 представлен большой осциллятор первого класса, предназначенный для беспроводных экспериментов, получения Рентгеновских лучей и научных исследований в целом. Он состоит из коробки, содержащей два конденсатора одинаковой емкости, на которой поддерживаются зарядная катушка и трансформатор. Автоматический контроллер цепи, ручной выключатель и соединительные клеммы смонтированы на передней пластине бобины индукционной катушки, как и одна из контактных пружин. Конденсаторная коробка снабжена тремя контактами, из которых два внешних служат просто для подключения, а средний поддерживает контактную пластину с винтом для регулировки интервала, в течение которого цепь замкнута. Сама вибрирующая пружина, единственная функция которой — вызывать периодические прерывания, может быть отрегулирована по своей силе как и по расстоянию от железного сердечника в центре зарядной катушки четырьмя винтами, видимых на верхней пластине, так что обеспечиваются любые желаемые условия механического управления. Первичная катушка трансформатора сделана из медного листа, и подключения сделаны в точках, удобных для целей произвольного варьирования числа витков. Как на Рис. 1 ндукционная катушка намотана в две секции для адаптации прибора как для цепей на 110, так и на 220 вольт, а сделано несколько вторичных обмоток для согласования различных длин волн первичной. Выход был примерно 500 ватт с затухающими волнами примерно 50,000 циклов в секунду. На короткие периоды времени получались незатухающие осцилляции путем подвинчивания вибрационной пружины туго к железному сердечнику и разделения контактов с помощью регулировочного винта, который также исполняет функцию ключа. С этим осциллятором я провел большое количество важных исследований и он был одной из машин, которые демонстрировались на лекции перед Нью Йоркской Академией Наук в 1897.

Рис. 4 — это фотография трансформатора такого типа, который во всех отношениях похож на проиллюстрированный в выпуске Electrical Experimenter за Май 1919, на который уже давалась ссылка. Существенные части в нем такие же, расположены они похожим образом, но он был спроектирован для применения на питающих цепях более высокого напряжения, от 220 до 500 вольт и выше. Обычные настройки выполняются путем регулировки контактной пружины и перемещения железного сердечника внутри катушки индуктивности вверх и вниз с помощью двух винтов. Для предотвращения повреждений в результате короткого замыкания в провода вставлены плавкие предохранители. Прибор сфотографирован в работе, во время генерации незатухающих осцилляции от осветительной сети 220 вольт.

На Рис. 5 показана более поздняя форма трансформатора, предназначенного главным образом для того, чтобы заменить катушку Румкорфа. Для этой цели изменена первичная катушка, в ней гораздо большее количество витков, и вторичная близко с ней связана. Токи, развиваемые в последней, имеют напряжение от 10,000 до 30,000 вольт и обычно применяются для зарядки конденсаторов и работы с независимой катушкой высокой частоты. Механизм регулировки имеет несколько другую конструкцию, но, как и в предыдущем случае, можно регулировать и сердечник, и контактную пружину.

На Рис. 6 — небольшое устройство этого типа, предназначенное специально для получения озона или стерилизации. Оно необыкновенно эффективно для своего размера и может подключаться к сети 110 или 220 вольт, постоянной или переменной, второе предпочтительней.

На Рис. 7 показана фотография более крупного трансформатора данного типа. Конструкция и расположение частей такое же, как и в предыдущем случае, но в ящике находятся два конденсатора, один из которых включен в цепь как в предыдущих случаях, а второй шунтирует первичную катушку. Таким образом, в последней получаются токи огромной величины, и вторичные эффекты усиливаются соответственно. Введение дополнительной согласованной цепи дает также и другие преимущества, но регулировка усложняется, и поэтому желательно использовать такой прибор для получения токов на определенной и неизменной частоте.

Рис. 8 показывает трансформатор с вращающимся прерывателем. В ящике находятся два конденсатора одинаковой емкости, которые можно соединять последовательно и параллельно. Зарядные индуктивности сделаны в виде двух длинных катушек, сверху которых размещаются вторичные клеммы. Небольшой мотор постоянного тока, скорость которого можно менять в широких пределах, используется как привод для прерывателя специальной конструкции. В остальном осциллятор подобен показанному на Рис. 3 и его работу легко можно будет понять из вышеупомянутого. Этот трансформатор применялся в моих беспроводных экспериментах, а также нередко для освещения лаборатории с помощью моих вакуумных трубок и демонстрировался в ходе моей лекции перед Нью Йоркской Академией Наук в 1897, упоминавшейся выше. Перейдем теперь к машинам второго класса. На Рис. 9 показан осцилляторный трансформатор, состоящий из конденсатора и зарядной индуктивности, помещенных в ящик, трансформатора и ртутного контроллера цепи, конструкция которого впервые описана в моем патенте No. 609,251 от 16 Августа 1898. Он состоит приводимого в движение мотором пустотелого шкива, содержащего небольшое количество ртути, которую центробежной силой несет наружу к стенкам сосуда, и она увлекает за собой контактное колесо, которое периодически замыкает и размыкает цепь конденсатора. С помощью регулировочных винтов, находящихся над шкивом, можно произвольно изменять глубину погружения лопаток, а следовательно и продолжительность каждого контакта, таким образом регулируются интенсивность эффектов их характеристики. Этот вид прерывателя удовлетворителен во всех отношениях при работал на токах от 20 до 25 ампер. Число прерываний обычно составляет от

500 до 1,000 в секунду, но можно работать и с более высокими частотами. Объем, занимаемый прибором, составляет 10" X 8" X 10", выход — около 1/2 kW.

В только что описанном трансформаторе прерыватель сообщается с атмосферой и происходит медленное окисление ртути. Этот недостаток преодолен в приборе, показанном на Рис. 10, который состоит из перфорированной металлической коробки, в которой находятся конденсатор и зарядная индуктивность, а сверху — мотор, приводящий в действие прерыватель, и трансформатор. Ртутный прерыватель относится к типу, который надо описать, и работает на принципе струи, которая периодически входит в контакт с вращающимся колесом внутри шкива. Неподвижные части находятся в сосуде на штанге, проходящей через длинный пустотелый вал мотора, и для достижения герметичного закупоривания камеры, в которой находится контроллер цепи, используется ртутный затвор. Ток подается во внутренность шкива через два скользящих кольца, которые находятся на верху и последовательно соединены с конденсатором и первичной катушкой. Предотвращение попадания кислорода — это бесспорное преимущество, потому что исключаются окисление металла и сопутствующие проблемы, и постоянно поддерживаются безукоризненные рабочие условия.

Рис. 11 — это фотография аналогичного осциллятора с герметически закрытым ртутным прерывателем. В этой машине неподвижные части прерывателя внутри шкива находятся на трубке, через которую проходит изолированный провод, соединенный с одним контактом прерывателя, а другой находится в контакте с сосудом. Таким образом, скользящих колец удалось избежать и конструкция упростилась. Этот прибор был разработан для осцилляции меньшего напряжения и частоты, требовал первичных токов сравнительно меньшего ампеража, и использовался для возбуждения других резонансных цепей.

Рис. 12 показывает улучшенную форму осциллятора типа описанного на Рис. 10, в котором от поддерживающей штанги через полый вал мотора избавились, и устройство, накачивающее ртуть, поддерживается в своем положении за счет силы тяжести, как будет более подробно разъяснено в связи с другим рисунком. И емкость конденсатора, и первичные витки были сделаны переменными для целей получения осцилляции нескольких частот.

Рис. 13 — это фотографическое изображение другой формы осцилляторного трансформатора с герметически закрытым ртутным прерывателем, а диаграммы на Рис. 14 показывают соединения цепи и организацию частей, воспроизведенные из моего патента No. 609,245 от 15 Августа 1898, описывающего именно это устройство. Конденсатор, индуктивность, трансформатор и контроллер цепи расположены как и раньше, но последний имеет другую конструкцию, что станет ясно из рассмотрения Рис. 14. Полый шкив а укреплен на валу С, который установлен в вертикальном подшипнике, проходящем через постоянный магнит d мотора. Внутри сосуда на бесфрикционных подшипниках находится тело h из магнитного материала, которое окружено колпаком b в центре пластинчатого железного кольца на полярные участки которого 00 намотаны зарядные катушки р. Кольцо удерживается на четырех колоннах, и, когда намагничено, удерживает тело h в одном положении во врем; вращения шкива. Последний изготовлен из стали, но колпак лучше делать из Немецкого серебра, черненого кислотой, или никелированным. На теле h держится короткая трубка к, согнутая, как показано, для улавливания жидкости, когда она раскручивается, и выпускания ее на зубцы колеса, крепящегося к шкиву. Колесо показано на рисунке, контакт между ним и внешней цепью устанавливается через чашку со ртутью. Когда шкив быстро вращается, струя жидкости устремляется к колесу, тем самым устанавливая и разрывая контакт примерно 1,000 раз в секунду. Прибор работает тихо и, благодаря отсутствию окисляющихся частей, всегда остается чистым и в отличном состоянии. При этом, число прерываний в секунду может быть гораздо больше, давая токи, пригодные для беспроводной телеграфии и подобных целей.

Модифицированная форма осциллятора показана на Рис. 15 и 16, на первом из них фотографическое изображение, а на втором — схематическая иллюстрация, показывающая устройство внутренних частей контроллера. В данном случае, вал b, на котом крепится сосуд а, полый и поддерживает, в бесфрикционных подшипниках, шпиндель j, к которому крепится вес к. На изогнутом кронштейн е L, изолированном от последнего, но механически прикрепленному к нему, закреплено свободно вращающееся прерывающее колесо с выступами QQ. Колесо находится в электрическом контакте с внешней цепью через чашку со ртутью и изолированную втулку, крепящуюся со верхней стороны шкива. Благодаря наклонному положению мотора вес к удерживает прерывающее колесо в его положении за счет силы тяжести, и при вращении шкива цепь, в которую входят конденсатор и первичная катушка трансформатора, быстро замыкается и размыкается.

Рис. 17 показывает похожий прибор, в котором однако прерывающее устройство состоит из струи ртути, сталкивающейся с изолированным зубчатым колесом, держащемся на изолированном штифте в центре кожуха шкива, как показано. Соединение с цепью конденсатора идет через щетки, держащиеся на этом штифте.

Рис. 18 — фотография другого трансформатора с ртутным контроллером цепи колесного типа, в модифицированного некоторых отношениях, распространяться о которых надобности нет.

Это только лишь немногие из осцилляторных трансформаторов, которые я построил, и которые составляют только малую часть моих высокочастотных приборов, которым я надеюсь дать полное описание когда-нибудь в будущем, когда освобожусь от неотложной работы.

Данный текст является ознакомительным фрагментом.