Глоссарий
Глоссарий
В глоссарий входят термины, выделенные курсивом.
Абсолютно черное тело. Гипотетическое идеализированное тело, способное поглощать и испускать все падающее на него электромагнитное излучение. В лаборатории оно моделируется нагретым ящиком с крошечным отверстием в одной из его стенок.
Альфа-распад. Процесс радиоактивного распада ядра атома, в результате которого происходит испускание ?-частицы.
Альфа-частица. Субатомная положительно заряженная частица, состоящая из двух связанных протонов и нейтронов. Испускается при альфа-распаде; идентична ядру атома гелия.
Амплитуда. Максимальное смещение в волне или при колебательном движении, равное половине расстояния от верхней точки волны (или колебания) до самой нижней точки. В квантовой механике амплитуда процесса — это число, связанное с вероятностью осуществления данного процесса.
Атом. Наименьшая, химически неделимая часть элемента, состоящая из положительно заряженного ядра, окруженного системой отрицательно заряженных электронов. Поскольку атом нейтрален, число положительно заряженных протонов в ядре равно числу электронов.
Атомный номер (Z). Количество протонов в ядре атома. Атомный номер каждого элемента определен однозначно. Атомный номер водорода, ядро которого состоит из одного протона, вокруг которого вращается один электрон, равен 1. Уран с 92 протонами и 92 электронами имеет атомный номер 92.
Бета-частица. Быстро двигающийся электрон, испускаемый ядром радиоактивного элемента в результате превращения нейтрона в ядре атома в протон. Хотя р-частицы двигаются быстрее и обладают большей проникающей способностью, чем а-частицы, тонкая металлическая фольга может их остановить.
Броуновское движение. Хаотическое движение частичек пыльцы, взвешенных в жидкости. Впервые наблюдалось в 1827 году Робертом Броуном. В 1905 году Эйнштейн понял, что броуновское движение — результат случайных ударов частичек пыльцы молекулами жидкости.
Вектор скорости. Скорость тела в заданном направлении.
Вероятностная интерпретация. Предложенная Борном интерпретация волновой функции, согласно которой она позволяет вычислить только вероятность обнаружить частицу в данном месте. Это неотъемлемая часть положения, согласно которому квантовая механика может воспроизвести только относительные вероятности результатов измерения наблюдаемых величин и не может предсказать, каким будет результат данного эксперимента.
Волновая механика. Версия квантовой механики, предложенная Эрвином Шредингером в 1926 году.
Волновая функция (?). Математическая функция, описывающая волновые свойства системы частиц. Волновая функция определяет все, что можно знать о состоянии физической системы или частицы в квантовой механике. Например, с помощью волновой функции атома водорода можно вычислить вероятность обнаружить его электрон в определенной точке вблизи ядра. См. вероятностная интерпретация и уравнение Шредингера.
Волновой пакет. Суперпозиция большого числа различных волн, гасящих друг друга везде кроме небольшой, ограниченной области пространства; можно использовать для отображения частицы.
Волны материи. Когда поведение частицы демонстрирует волновой характер, ассоциирующаяся с нею волна называется волной материи или волной де Бройля. См. длина волны де Бройля.
Вынужденная (вторичная) эмиссия. Процесс, при котором падающий фотон не поглощается возбужденным атомом, а “вынуждает” его испустить еще один фотон той же частоты.
Гамма-лучи. Электромагнитное излучение очень малой длины волны. Самое проникающее из трех типов излучения, испускаемых радиоактивными веществами.
Гармонический осциллятор. Вибрирующая или колеблющаяся система, частота вибраций или колебаний которой не зависит от амплитуды.
Детерминизм. В классической механике: если в данный момент времени координаты и импульсы всех частиц во Вселенной известны, и известны также все силы, действующие между частицами, то можно, в принципе, определить состояние Вселенной в следующий момент времени. В квантовой механике в любой момент времени невозможно одновременно точно указать и координату, и импульс частицы. Такая теория приводит к недетерминистскому взгляду на процессы, происходящие во Вселенной: ее будущее, как и будущее отдельной частицы, не может быть в принципе определено.
Джоуль (Дж). Единица энергии, используемая в классической физике. Лампочка мощностью сто ватт за секунду преобразует сто джоулей электрической энергии в тепло и свет.
Динамические переменные. Координата, импульс, потенциальная энергия, кинетическая энергия и другие величины, которые используются для характеристики состояния частицы.
Дифракция. Размывание волн при прохождении вблизи препятствия или через апертуру, такое как изменение структуры морских волн, попадающих в гавань через щель в ограждающей ее стене.
Длина волны (А). Расстояние между двумя последовательными самыми высокими или самыми низкими точками волны. Длина волны электромагнитного излучения определяет, к какой части электромагнитного спектра принадлежит данная волна.
Длина волны де Бройля. Длина волны частицы ?, связанная с ее импульсом p соотношением ? = h/p, где h — постоянная Планка.
Закон распределения Вина. Формула, выведенная Вильгельмом Вином в 1896 году и описывавшая распределение излучения абсолютно черного тела в согласии с доступными тогда экспериментальными данными.
Закон смещения Вина. В 1893 году Вильгельм Вин обнаружил, что при увеличении температуры абсолютно черного тела длина волны, соответствующая максимальной интенсивности излучения, сдвигается в область все более коротких длин волн.
Закон сохранения. Закон, устанавливающий, что данная физическая величина, такая как, например, импульс или энергия, сохраняется во всех физических процессах.
Излучение. Излучение энергии частицами. В качестве примеров можно указать электромагнитное излучение, тепловое излучение и радиоактивность.
Излучение абсолютно черного тела. Электромагнитное излучение, испускаемое абсолютно черным телом.
Изотопы. Различные формы одного и того же элемента. В ядрах атомов изотопов число протонов одинаково, они имеют один и тот же атомный номер, но число нейтронов различно. Например, имеется три изотопа водорода, в ядрах которых либо вообще нет нейтронов, либо есть один или два нейтрона. Химические свойства всех трех форм водорода одинаковы, но массы их атомов различны.
Импульс (p). Физическое свойство тела, равное произведению его массы на скорость тела.
Интерференция. Явление, описывающее взаимодействие двух распространяющихся волн. Там, где встречаются две впадины или два гребня волны, они объединяются, образуя новые, более глубокие впадины и более высокие гребни. Это называется конструктивной интерференцией. Однако там, где встречаются впадины и гребни, они гасят друг друга. Такой процесс называется деструктивной интерференцией.
Инфракрасное излучение. Электромагнитное излучение с длиной волны большей, чем у видимого красного света.
Квант. Термин введен Максом Планком в 1900 году для описания отдельных порций энергии, которые может испускать или поглощать осциллятор в модели, использованной Планком для вывода формулы, описывающей распределение излучения абсолютно черного тела. Энергия излучения из разного числа порций размера E = h? (квантов), где h — постоянная Планка, a ? — частота излучения. Слово “квант”, точнее квантованная величина, относится ко всем физическим свойствам микроскопических систем или тел, которые не являются непрерывными, но могут меняться только отдельными порциями.
Квантованная величина. Любая физическая величина, которая может принимать только дискретные значения, называется квантованной. В атоме имеются только дискретные уровни энергии, поэтому его энергия квантована. Спин электрона квантован, поскольку он может принимать только значения +1/2 (спин вверх) и -1/2 (спин вниз).
Квантовая механика. Физическая теория атомного и субатомного мира, заменившая ту искусственно придуманную мешанину из классической механики и квантовых представлений, которая появилась между 1900 и 1925 годами. Совсем не похожие друг на друга матричная механика Гейзенберга и волновая механика Шредингера являются математически эквивалентными теориями, представляющими собой квантовую механику.
Квантовый прыжок (квантовый скачок). Переход электрона с одного энергетического уровня на другой внутри атома или молекулы благодаря испусканию или поглощению фотона.
Квантовый спин. Фундаментальное свойство частиц, не имеющее прямого аналога в классической физике. Любая попытка сравнить для наглядности “вращение” электрона с вращением волчка обречена на неудачу и не позволяет уяснить это квантовое понятие. Квантовый спин нельзя представить себе, используя термины, описывающие классическое вращение, поскольку он может принимать только строго определенные значения, равные либо целому, либо полуцелому числу постоянных Планка h деленных на 2? (величину ? = h/2? называют h перечеркнутое). Говорят, что квантовый спин направлен либо вверх (по часовой стрелке), либо вниз (против часовой стрелки) относительно направления, в котором он измеряется.
Квантовое число. Числа, задающие квантованные физические величины, такие как энергия, квантовый спин или угловой момент. Например, квантованные уровни энергии атома водорода обозначаются набором чисел, начинающимися от n = 1 для основного состояния, где n — главное квантовое число.
Квант света. Название, впервые использованное Эйнштейном в 1905 году для обозначения частицы света, позднее получившей название фотон.
Кинетическая энергия. Энергия, связанная с движением тела. У покоящегося тела, планеты или частицы кинетической энергии нет.
Классическая механика. Название области физики (другое название — ньютоновская механика), восходящей к трем законам движения Ньютона), где такие свойства частицы, как координата и импульс, в принципе могут быть измерены одновременно и сколь угодно точно.
Классическая физика. Словосочетание, используемое в применении к любой неквантовой физике, такой как электромагнетизм и термодинамика. Хотя общую теорию относительности Эйнштейна физики считают “новой” физикой XX столетия, это, тем не менее, “классическая” теория.
Коллапс волновой функции. Согласно копенгагенской интерпретации, до тех пор, пока над микроскопическим объектом, например электроном, не выполнено наблюдение, он не существует нигде. Между двумя последовательными измерениями объект существует только как абстрактные возможности, описываемые волновой функцией. При наблюдении или измерении одно из “возможных” состояний электрона становится его “реальным” состоянием, а вероятности всех других состояний становятся равными нулю. Это неожиданное скачкообразное изменение волновой функции в результате акта измерения называется “коллапсом волновой функции”.
Коммутативность. Говорят, что переменные А и В коммутируют, если А x В = В x А. Например, если А и B — числа 5 и 4, то 5 x 4 = 4 x 5. Перемножение чисел коммутативно, поскольку порядок, в котором они перемножаются, не имеет значения. Если же А и В — матрицы, то A x В не обязательно равно В x А. Когда такое происходит, говорят, что A и B не коммутируют.
Комплексное число. Число вида а + ib, где а и b — обычные, известные из арифметики, числа. Буква i обозначает квадратный корень из -1. Величина b называется мнимой частью комплексного числа.
Комптона эффект. Рассеяние фотонов электронами атомов, открытое американским физиком Артуром X. Комптоном в 1923 году.
Конденсационная камера (камера Вильсона). Прибор, изобретенный Ч.Т.Р. Вильсоном около 1911 года. Позволяет регистрировать частицы, наблюдая трек, оставленный ими в камере, заполненной перенасыщенным паром.
Копенгагенская интерпретация. Интерпретация квантовой механики, формулировка которой принадлежит главным образом жившему в Копенгагене Нильсу Бору. Противоречия между Бором и другими известными сторонниками копенгагенской интерпретации, например Вернером Гейзенбергом, сохранялись многие годы. Однако все соглашались с ее основными постулатами: принципом соответствия Бора, принципом неопределенности Гейзенберга, вероятностной интерпретацией волновой функции Борна, принципом дополнительности Бора и коллапсом волновой функции. Нет квантовой реальности кроме той, которая открывается нам при акте измерения или наблюдения. Поэтому бессмысленно говорить, что, например, электрон где-то существует, независимо от реального наблюдения. Бор и его сторонники утверждали, что квантовая механика — полная теория. Эйнштейн подвергал это утверждение сомнению.
Корпускулярно-волновой дуализм. В зависимости от эксперимента электроны и фотоны, материя и излучение могут вести себя как волны либо как частицы.
Кот Шредингера. Мысленный эксперимент, придуманный Эрвином Шредингером, суть которого состоит в том, что если справедливы положения квантовой механики, кот, до того как на него посмотрят, существует в суперпозиции состояний “мертвый” и “живой”.
Локальность. Требование, чтобы причина и вызванное ею следствие были привязаны к одному и тому же месту. Не допускается мгновенное действие на расстоянии. Если событие А является причиной события В, между этими двумя событиями должно пройти достаточно времени для того, чтобы сигнал от А, двигающийся со скоростью света, мог достичь В. Любая теория, в которой выполняется требование локальности, называется локальной. См. нелокальность.
Матрицы. Таблицы чисел (или других элементов, таких как переменные), с которыми следует оперировать по особым алгебраическим правилам. Матрицы очень удобны для записи информации о физической системе. Квадратная матрица n x n имеет n столбцов и n рядов.
Матричная механика. Вариант квантовой механики, сформулированный Гейзенбергом в 1925 году, а затем развитый совместно с Максом Борном и Паскуалем Йорданом.
Мысленный эксперимент. Идеализированный, воображаемый эксперимент, цель которого — проверить непротиворечивость или границы применимости физической теории или концепции.
Наблюдаемая величина. Относящаяся к системе или телу динамическая переменная, которая в принципе может быть измерена. Так, координата, импульс и кинетическая энергия электрона — это наблюдаемые величины.
Нанометр (нм). Один нанометр равен одной миллиардной метра.
Нейтрон. Незаряженная частица, масса которой порядка массы протона.
Нелокальность. Возможность мгновенной передачи влияния от одной системы или частицы другой со скоростью, превосходящей предельное значение, равное скорости света. Это подразумевает, что причина может вызвать немедленное следствие в другом, находящемся на некотором расстоянии, месте. Любая теория, допускающая нелокальность, называется нелокальной. См. локальность.
Неравенство Белла. Математическое условие, выведенное Джоном Беллом в 1964 году и накладывающее ограничение на степень корреляции квантовых спинов перепутанных частиц. Это неравенство должно удовлетворяться в рамках любой теории с локальными скрытыми параметрами.
Общая теория относительности. Теория гравитации Эйнштейна, объясняющая гравитационные эффекты деформацией пространства-времени.
Основное состояние. Самое низкое энергетическое состояние атома. Все другие состояния атома называются возбужденными. В атоме водорода, находящемся в самом низком энергетическом состоянии, электрон занимает самый низкий энергетический уровень. Если электрон занимает любой другой энергетический уровень, атом водорода находится в возбужденном состоянии.
Период. Время, необходимое на то, чтобы одна длина волны прошла через фиксированную точку; или время, которое требуется, чтобы завершить один цикл колебаний или вибраций. Период обратно пропорционален частоте волны, колебаний или вибраций.
Периодическая таблица. Таблица, в которой химические элементы расположены по порядку в соответствии с их атомным номером. Демонстрирует периодичность химических свойств элементов.
Перепутывание. Квантовое явление, при котором две или более частиц оказываются неразрывно связанными независимо оттого, как далеко они разнесены.
Постоянная Планка (h). Фундаментальная физическая постоянная, равная 6,626 х 10-34 Дж, умноженных на секунду. Постоянная Планка лежит в основе квантовой физики. Именно потому, что постоянная Планка отлична от нуля, в атомном мире происходит разделение на кванты, квантование энергии и других физических величин.
Потенциальная энергия. Энергия, которой тело или система обладает в силу своего положения в пространстве или состояния. Так, высота тела над землей определяет его потенциальную энергию гравитационного притяжения.
Принцип дополнительности. Принцип, сформулированный и отстаиваемый Нильсом Бором, согласно которому корпускулярные и волновые свойства являются дополнительными, но взаимоисключающими. Дуальная природа света и материи похожа на две стороны одной монеты, которая может упасть на какую-то одну из сторон, но не обе одновременно. Например, можно поставить эксперимент, чтобы обнаружить волновые свойства либо корпускулярную природу объекта, но не их проявление одновременно.
Принцип запрета. Никакие два электрона не могут находиться в одном и том же квантовом состоянии, иначе говоря, иметь одинаковые наборы из четырех квантовых чисел.
Принцип неопределенности. Принцип, открытый Вернером Гейзенбергом в 1927 году, согласно которому невозможно одновременно измерить некоторые пары наблюдаемых величин, таких как координата и импульс или энергия и время, с точностью, превышающей предельное значение, выраженное через постоянную Планка h.
Принцип соответствия. Основополагающий принцип, сформулированный Бором: законы и уравнения квантовой физики переходят в законы и уравнения классической физики в тех случаях, когда можно не учитывать постоянную Планка.
Причинность. Каждое причина вызывает следствие.
Протон. Положительно заряженная частица, входящая в состав ядра атома. Его заряд равен по величине, но противоположен по знаку заряду электрона, а масса примерно в две тысячи раз больше массы электрона.
Радиоактивность. Явление, при котором нестабильные атомные ядра спонтанно делятся, переходя в более стабильное состояние. Деление сопровождается испусканием альфа-, бета-или гамма-излучения. Этот процесс называется радиоактивностью (радиоактивным распадом).
Рассеяние. Изменение направления движения одной частицы другой частицей.
Реализм. Философское учение, постулирующее существование реальности независимо от познающего ее субъекта. Так, для реалиста Луна существует и тогда, когда на нее никто не смотрит.
Рентгеновские лучи (Х-лучи). Излучение, открытое в 1895 году Вильгельмом Рентгеном. За это открытие ему в 1901 году была присуждена первая Нобелевская премия. Позднее было показано, что рентгеновские лучи — электромагнитные волны с очень короткой длиной волны, испускаемые при бомбардировке мишени быстрыми электронами.
Свет. Человеческий глаз воспринимает только малую часть всех электромагнитных волн. Это видимые длины волн электромагнитного спектра, находящиеся между 400 нм (фиолетовый) и 700 нм (красный). Белый свет — смесь красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Когда пучок белого света проходит через стеклянную призму, он разделяется на разноцветные полосы, образуя след в виде радуги, называемый континуумом или непрерывным спектром.
Серии Бальмера. Набор линий испускания и поглощения в спектре водорода, связанных с перескоками электрона между вторым и более высокими энергетическими уровнями.
Скрытые параметры. Интерпретация квантовой механики, основанная на уверенности, что эта теория не является полной и что существует лежащий глубже уровень реальности, содержащий дополнительную, скрытую информацию о квантовом мире. Эта дополнительная информация существует в виде скрытых параметров, не наблюдаемых, но реальных физических величин. Определение скрытых параметров должно привести к точному, а не только к вероятностному, предсказанию результатов каждого измерения. Приверженцы этой теории верят, что она поможет вернуться к реальности, существующей независимо от наблюдателя, что отрицается копенгагенской интерпретацией.
Сопряженные переменные. Пара динамических переменных, таких как координата и импульс или энергия и время, для которых выполняются соотношения неопределенностей, называются сопряженными переменными или сопряженными парами.
Сохранение энергии. Закон, гласящий, что энергия не может быть ни произведена, ни уничтожена, а может только переходить из одной формы в другую. Например, когда яблоко падает с дерева, его потенциальная энергия преобразуется в кинетическую энергию.
Спектральное распределение энергии излучения абсолютно черного тела. При любой заданной температуре определяет интенсивность электромагнитного излучения, испускаемого абсолютно черным телом для каждой длины волны (частоты). Иногда просто говорят: спектр абсолютно черного тела.
Спектральные линии. Система разноцветных линий на черном фоне называется эмиссионным спектром. Серия темных линий на разноцветном фоне называется спектром поглощения. Каждый элемент имеет собственный уникальный набор спектральных линий излучения и поглощения, образованных соответственно при испускании или поглощении фотона, когда электроны внутри атома данного элемента перепрыгивают с одного энергетического уровня на другой.
Спектроскопия. Область физики, связанная с анализом и изучением спектров поглощения и излучения.
Специальная теория относительности. Теория, построенная Эйнштейном в 1905 году, где исследуются пространственно-временные отношения, при которых скорость света остается постоянной для любого наблюдателя, как бы быстро он ни двигался. “Специальная” она потому, что не рассматривает ускоряющиеся тела и гравитацию.
Спонтанная эмиссия. Самопроизвольное испускание фотона при переходе атома из возбужденного состояния в состояние с меньшей энергией.
Степени свободы. Говорят, что у системы имеется n степеней свободы, если для описания всех состояний системы необходимо n координат. Каждая степень свободы соответствует независимому направлению, в котором тело может двигаться, или система может изменяться. В нашем мире материальная точка обладает тремя степенями свободы. Они соответствуют трем направлениям, в которых она может двигаться: вверх и вниз, туда и сюда, из одной стороны в другую.
Суперпозиция. Квантовое состояние, составленное из двух или большего числа других состояний. С определенной вероятностью в таком состоянии могут проявляться свойства тех состояний, из которых оно составлено. См. Кот Шредингера.
Теорема Белла. Математически доказанное Джоном Беллом в 1964 году утверждение, согласно которому любая теория со скрытыми параметрами, предсказания которой согласуются с квантовой механикой, должна быть нелокальной. См. нелокальность.
Термодинамика. Обычно так называют область физики, в которой изучается превращение тепла в какую-либо другую форму энергии, или обратный процесс превращения энергии в тепло.
Термодинамики первый закон. Внутренняя энергия изолированной системы остается постоянной. Или: энергию нельзя ни создать, ни уничтожить (закон сохранения энергии).
Термодинамики второй закон. Тепло самопроизвольно не переходит от холодных к горячим телам. Существуют разные формулировки этого закона. Одна из них такова: энтропия замкнутой системы не может уменьшаться.
Тонкая структура. Расщепление энергетического уровня или спектральной линии на несколько отдельных уровней или линий.
Угловой момент. Свойство вращающегося тела, сходное с импульсом двигающегося по прямой тела. Угловой момент тела зависит от его массы, размера и скорости вращения. Тело, совершающее орбитальное движение, тоже обладает угловым моментом, зависящим от его массы, радиуса орбиты и скорости. В мире атомов угловой момент квантуется. Он может меняться только на величину, равную целому числу постоянных Планка, деленному на 2?.
Ультрафиолетовая катастрофа. В классической физике по мере увеличения частоты бесконечно возрастает спектральная плотность излучения абсолютно черного тела. На самом деле в природе ультрафиолетовой катастрофы, предсказанной классической теорией, не может быть.
Ультрафиолетовый свет. Электромагнитное излучение с длиной волны меньшей, чем у видимого фиолетового света.
Уравнения Максвелла. Выведенный Джеймсом Клерком Максвеллом в 1864 году набор из четырех уравнений, описывающий и объединяющий такие разные явления, как электричество и магнетизм, в электромагнетизм.
Уравнение Шредингера. Основное уравнение волновой механики, выражающее собой одну из формулировок квантовой механики. Это уравнение управляет движением частицы или эволюцией физической системы, определяя зависимость волновой функции от времени. Уравнение имеет вид
где m — масса частицы,
Фотон. Квант электромагнитного излучения (в узком смысле — света), характеризующийся энергией Е = h? и импульсом р = h/?, где ? — частота, а ? — длина волны излучения. Название введено американским химиком Гильбертом Льюисом в 1926 году. См. квант света.
Фотоэлектрический эффект. Испускание электронов с поверхности металла под действием электромагнитного излучения, частота которого превышает некоторое (для каждого металла — собственное) минимальное значение (длина волны меньше максимального значения), при котором фотоэлектрический эффект еще возможен.
Частота (?). Число полных циклов, совершаемых при вибрации или колебании системы за секунду. Частота волны — число полных длин волн, проходящих через фиксированную точку за одну секунду. Единица измерения частоты — герц (Hz, Гц). При частоте 1 герц за одну секунду совершается один цикл колебаний или через данную точку проходит одна длина волны.
Щелочные металлы. Входящие в первую группу периодической таблицы элементы, такие как литий, натрий и калий, обладающие сходными химическими свойствами.
Электромагнетизм. До второй половины XIX столетия считалось, что электричество и магнетизм — два разных явления, каждое из которых описывается своей системой уравнений. Эксперименты Майкла Фарадея позволили Джеймсу Клерку Максвеллу построить теорию, объединившую электричество и магнетизм в электромагнетизм, и описать поведение электрического и магнитного полей системой из четырех уравнений.
Электромагнитные волны. Генерируются колеблющимися электрическими зарядами. Различаются длиной волны (или, что то же самое, частотой). В пустом пространстве все электромагнитные волны распространяются с одинаковой скоростью, равной скорости света (приблизительно триста тысяч километров в секунду). Это является экспериментальным подтверждением того, что свет — электромагнитная волна.
Электромагнитное излучение. Электромагнитные волны, переносящие разное количество энергии, называются электромагнитным излучением. Низкочастотные волны, такие как радиоволны, испускают меньше электромагнитного излучения, чем высокочастотные волны, такие как гамма-лучи. Электромагнитные волны и электромагнитное излучение — взаимозаменяемые понятия. См. электромагнитные волны и излучение.
Электромагнитный спектр. Весь диапазон электромагнитных волн: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи и гамма-лучи.
Электрон. Отрицательно заряженная элементарная частица, которая, в отличие от протона и нейтрона, не состоит из других элементарных составляющих.
Электронвольт (эВ). Единица энергии, которая используется в атомной и ядерной физике, в физике элементарных частиц. Один электронвольт — порядка одной десятой миллиард миллиардной джоуля (1,6 х 10-19 Дж).
Энергетические уровни. Набор дискретных разрешенных внутренних энергетических состояний атома, соответствующий его различным квантовым энергетическим состояниям.
Энергия. Физическая величина, которая может существовать в разных формах: кинетическая энергия, потенциальная энергия, химическая энергия, тепловая энергия и энергия излучения.
Энтропия. В XIX веке Рудольф Клаузиус определил изменение энтропии как количество тепла, получаемого или отдаваемого телом или системой, поделенное на температуру, при которой происходит передача тепла. Энтропия — мера беспорядка в системе: чем больше энтропия, тем больше беспорядок. В природе не могут происходить физические процессы, приводящие к понижению энтропии.
Эфир. Гипотетическая невидимая среда. Считалось, что эфир заполняет все пространство и является той средой, в которой распространяется свет и все другие электромагнитные волны.
Эффект Зеемана. Расщепление спектральных линий атома, помещенного в магнитное поле.
Эффект Штарка. Расщепление спектральных линий атома, помещенного в электрическое поле.
Ядро. Положительно заряженная масса в центре атома. Первоначально предполагалось, что ядро состоит только из протонов, но затем стало ясно, что в состав ядер входят и нейтроны. В ядре сосредоточена практически вся масса атома, но занимает оно только крошечную часть его объема. Ядра были открыты в 1911 году Эрнестом Резерфордом и его сотрудниками из Манчестерского университета.