2. Почему атомы повсюду танцуют рок-н-ролл
2. Почему атомы повсюду танцуют рок-н-ролл
Тот факт, что вы не проваливаетесь сквозь пол, говорит вам: есть что-то такое, что не дает микроскопическим составляющим материи развалиться на еще более мелкие части
С классической точки зрения атомы попросту невозможны.
Ричард Фейнман[13]
И может, это потому, что атомам моим на месте не сидится, им хочется повсюду пускаться в рок-н-ролл…
Адриан Митчелл («Солнце меня любит», из сборника «Сердце слева. Стихотворения 1953–1984 гг.»)[14]
Земля под вашими ногами — твердая, крепкая. Книга, которую вы держите в руках, — тоже крепкая. Да и вы сами — твердый, крепкий человек. Вероятно, вы считаете эти вещи само собой разумеющимися. Как бы не так! Должен вас огорчить: 99,9999999999999 % материи — пустота. Земля, на которой вы стоите, куда более разрежена, чем самая разреженная утренняя дымка. Эта книга — не более чем призрак; слова, которые вы читаете, — призрачные слова. Да и вы сами — простите великодушно — тоже призрак. Конечно, если земля столь поразительно иллюзорна, вы не можете не задуматься: как же она способна выдерживать ваш вес? Почему вы не проваливаетесь сквозь нее, хотя должны были бы провалиться, раз она подобна утреннему туману? Ответ таков: есть что-то, что мешает кирпичикам материи даже отдаленно соседствовать друг с другом. Есть некая таинственная сила… — она столь яростна, что неумолимо расталкивает в разные стороны электроны и атомные ядра; при этом материя становится жесткой, как если бы образующие ее частички крепились к каркасу из прочных невидимых балок. Именно за счет этой силы земля под вашими ногами — несмотря на то что она столь невероятно разрежена — способна выдерживать ваш вес.
Чтобы понять, почему вещество столь всеобъемлюще заполнено пустотой, сначала нужно разобраться с атомами. Как уже говорилось, идеей, что все состоит из атомов, мы обязаны греческому философу Демокриту [15]. Он убеждал, что не только материя в конечном итоге состоит из очень маленьких, неделимых зерен, но сами такие зерна бывают разных видов, причем набор этих видов весьма ограничен. Комбинируя крошечные зернышки (микроскопические кирпичики «Лего», могли бы мы сказать) по-разному, можно получить дерево, или стол, или человека. Все дело в комбинациях. Конечно, далеко не очевидно, что материя зерниста, а не делима до бесконечности. Это потому, утверждал Демокрит, что атомы слишком малы, чтобы их можно было увидеть или пощупать. И вот два тысячелетия спустя ученые начали накапливать косвенные свидетельства существования атомов. Например, они осознали, что поведение газа — скажем, водяного пара — поддается объяснению лишь в том случае, если этот газ состоит из множества крошечных атомов, снующих туда и сюда, будто рой рассерженных пчел. В 1662 году ирландский физик Роберт Бойль (1627–1691) открыл, что если объем коробки, содержащей газ, уменьшить вдвое — вдвинув туда подвижную стенку («поршень»), — то потребуется вдвое больше сил, чтобы удерживать поршень, потому что давление газа будет его выталкивать. Если объем уменьшить втрое, то и сила потребуется втрое большая.
Итак далее. Это наблюдение, известное как закон Бойля-Мариотта[16], обретает смысл, если представить, что давление, оказываемое газом, — просто-напросто сила, с которой бесчисленные атомы лихорадочно колотят по поршню, словно дождевые капли по жестяной крыше. Если объем емкости сократить до половины (вдвинув тот самый поршень до середины коробки), то атомам, для того чтобы ударить сначала по поршню, а потом по донышку, нужно будет преодолеть вдвое меньшее расстояние. Следовательно, они будут биться о стенки вдвое чаще, создавая удвоенное давление. Если же объем уменьшить до одной трети, то атомам придется пробегать втрое меньшее расстояние и отскакивать от стенок они станут в три раза чаще — давление утроится.
Вот такое доказательство того, что атомы — это крохотные зернышки, пребывающие в постоянном движении. А как доказать, что они бывают разных видов? Это очень сложно, ведь, по Демокриту, главная причина того, что мир ошеломляюще разнообразен, заключается в следующем: атомы не просто прилепляются к себе подобным, но при первой возможности связываются с другими типами атомов. Однако же, как заметил Эйнштейн: «Бог хитер, но не злонамерен»[17]. Оказывается, некоторые вещества, например золото, не могут быть разобраны на более мелкие составляющие ни с помощью тепла, ни с помощью кислоты, ни каким-либо иным способом. Такие «элементные» вещества дают все основания для того, чтобы считать их большими скоплениями атомов одного типа.
Первым, кто идентифицировал такие вещества, был французский химик, аристократ Антуан Лоран Лавуазье (1743–1794). Его список, составленный в 1789 году, содержал 23 «элемента». На самом деле некоторые из них вовсе не были элементами, но, во всяком случае, Лавуазье положил начало. Пять лет спусти он был уже неспособен пополнять свой список, поскольку лишился головы на гильотине, однако его дело продолжили другие. Проблема заключалась в том, что к середине девятнадцатого века число известных элементов уже перевалило за пятьдесят, что было явно больше той горстки атомов различных типов, которые Демокрит полагал кирпичиками всей материи. Сегодня нам известны 92 элемента, встречающихся в природе, — этот ряд начинается с водорода, самого легкого, и заканчивается ураном, самым тяжелым из природных элементов. Почему так много?
Один из возможных ответов вот какой: атомы вовсе не конечные кирпичики материи, они сами состоят из более мелких частей. Это предположил один лондонский химик во втором десятилетии девятнадцатого века. Уильям Праут (1785–1850) сравнил веса различных элементов, последовательно их расположив, и открыл поразительную систему этой последовательности: большинство весов элементов были в точности кратны весу водорода, легчайшего из них [18]. Система, если заглянуть в словарь, — это «определенный порядок в расположении и связи действий». Возьмем «систему» в виде числа 8787878787878787878787. «Определенный порядок» виден сразу: простейшая составная часть этой записи числа — «87». Вот и система последовательности в виде весов элементов, которую обнаружил Праут, заманчиво намекала на то, что в атомах что-то происходит на некоем более глубоком, фундаментальном уровне: у них, судя по всему, есть внутренняя структура! Все становится на свои места, заключил Праут в 1815 году, если основной кирпичик природы — это атом водорода, а все более тяжелые элементы — просто различные количества атомов водорода, сцепленных вместе.
Другую заманчивую систему, связанную со свойствами элементов, выявил позднее русский химик Дмитрий Менделеев. Готовя учебник по химии, Менделеев составил карточки для каждого из известных на ту пору 67 элементов и занес в каждую свойства конкретного элемента, такие, как точка плавления и особенности химического «поведения». К своему собственному удивлению, Менделеев обнаружил, что если он особым образом расположит карточки горизонтальными рядами, в порядке возрастания атомного веса элементов, то в вертикальных колонках выстроятся элементы с одним и тем же «поведением». Периодическая система свойств химических элементов, открытая Менделеевым, говорила ученым о том, что атомы должны состоять из еще более мелких частиц, — то есть то же, о чем сообщала система весов элементов, выявленная Праутом.
На исходе девятнадцатого века крохотный кирпичик атома наконец-то явился на свет. Для того чтобы вырвать его из атома, кембриджский физик Джозеф Джон Томсон использовал ток высокого напряжения. «Электрон» — носитель электричества, поиски которого велись столь долго, — оказался фантастически мал. По измерениям Томсона, его «вес» составлял всего лишь одну двухтысячную от массы водорода, легчайшего из атомов. Этого было слишком мало, чтобы электрон оказался одним из тех субатомных кирпичиков, о которых рассуждал Праут. Также оставалось совершенно непонятным, какой может быть связь между этой крохотной частичкой и периодической системой химических свойств атомов, открытой Менделеевым. Однако электрон позволил ученым сделать первый штрих на картине внутреннего устройства атома.
Электрон несет «отрицательный» электрический заряд. Никто толком не знает, что же такое электрический заряд, известно только, что у него есть два конкретных имени — «плюс» и «минус», то есть заряды бывают положительные и отрицательные. Одноименные заряды отталкиваются друг от друга, а разноименные — притягиваются. Поскольку в повседневной жизни мы не обнаруживаем никакой электрической силы, которая тянула бы нас туда-сюда, мы знаем, что материя в целом должна быть электрически нейтральной: отрицательные заряды полностью уравновешиваются равным количеством положительных зарядов. Но таким образом, и в атоме отрицательный заряд электрона должен уравновешиваться положительным зарядом «чего-то еще». Хотя Томсон не имел ни малейшего представления, чем может быть это «что-то еще», он сумел состряпать весьма убедительную модель атома, изобразив его как расплывчатую сферу с положительным зарядом, в которой крошечные электроны сидят, словно изюминки в рождественском пудинге (в слове «состряпать» ничего обидного нет: эту модель порой так и называют — «пудинговой»).
В начале XX века томсоновская пудинговая модель была уже признанной картиной атома. Но в 1909 году один из гигантов экспериментальной физики перевернул все с ног на голову. Физик Эрнест Резерфорд, родом из Новой Зеландии, был одним из пионеров изучения «радиоактивности». На этот феномен в 1896 году наткнулся французский химик Антуан Анри Беккерель (1852–1908), обнаруживший, что фотопластинки затуманиваются таинственными «лучами», исходящими из образцов, которые содержали уран или торий. Далее эстафетную палочку перехватила Мария Кюри: в 1898 году, в Париже, она установила — совершенно корректно, надо сказать, — что загадочная «радиоактивность» представляет собой свойство атомов. Лучи, исходящие из радиоактивного вещества, были настолько интенсивны, что их можно было обнаружить, даже если в наличии имелось ничтожное количество атомов. Кюри с впечатляющим успехом использовала это свойство атомов, чтобы открыть два, до тех пор неизвестных науке элемента: полоний, который замелькал в заголовках мировой прессы в 2006 году, когда в Лондоне им был отравлен российский диссидент Александр Литвиненко, и радий.
В том же году, когда Мария Кюри открыла, что радиоактивность — это свойство атомов, работавший в Монреале Резерфорд обнаружил, что за радиоактивностью кроется испускание атомами двух совершенно разных типов лучей, которые он окрестил альфа- и бета-лучами. Ученый довольно быстро доказал, что бета-лучи представляли собой электроны, но с альфа-лучами пришлось повозиться. Лишь в 1903 году, когда Резерфорд работал в Манчестере вместе с молодым немецким студентом-физиком Гансом Гейгером, им удалось получить из образца радия достаточно большое количество альфа-лучей, чтобы понять, что это такое. Оказалось, эти загадочные лучи — вот уж чего никто не мог ожидать! — состояли из атомов гелия, второго наилегчайшего элемента после водорода [19]. Все указывало на то, что в ходе процесса, который был назван «радиоактивностью», один тип атома — радий — исторгал из себя другой тип атома — гелий. И это было еще одним свидетельством в пользу того, что атом состоит из более мелких частиц.
В конечном итоге Резерфорд решил загадку радиоактивности. Радиоактивный атом, как установили в 1901–1903 годах Резерфорд и работавший под его руководством химик Фредерик Содди (1877–1956), — это не что иное, как тяжелый атом, страдающий нестабильностью. Он просто бурлит от избытка энергии. В конце концов он сбрасывает этот избыток в виде альфа- или бета-частицы и, проделывая это, «расщепляется», или «распадается», становясь атомом элемента с меньшим атомным весом [20]. Но Резерфорду вовсе не обязательно было знать, что такое радиоактивность, для того чтобы найти способ «заглянуть» внутрь атома. В 1903 году он измерил скорость альфа-частиц, излучаемых радием, и обнаружил, что она невероятно велика — 25 000 километров в секунду, вполне достаточно, чтобы обогнуть пол-Земли менее чем за секунду. Образец радия походил на крохотный пулемет, выпускающий очереди субатомных пуль со сверхвысокой скоростью. Резерфорд понял, что это был превосходный инструмент для исследования внутренностей атома.
Его идея заключалась в том, чтобы обстрелять из радиевого «пулемета» тонкую фольгу. Проходя сквозь фольгу, некоторые альфа-частицы будут неизбежно отклоняться от своего пути, и по тому, как именно они будут отклоняться, Резерфорд надеялся сделать заключение о внутренней структуре атомов материала, из которого состояла фольга. Это все равно что обстрелять теннисными мячами какой-нибудь загадочный предмет меблировки и, определив направления, в которых отскакивают мячи, определить, что там такое было — стул, стол или же кухонный буфет. В поисках ответа на вопрос о внутренностях атома Резерфорд совершенно гениально задумал взять атом и… обернуть его против самого себя! Он решил использовать один тип атома — атом гелия, изрыгаемый радием, — чтобы создать представление об устройстве совершенно другого типа атома.
Альфа-частица в четыре раза тяжелее атома водорода и, таким образом, примерно в 8000 раз весомее электрона. Поэтому Резерфорд ожидал, что альфа-пули, выпущенные из его радиевого автомата, прошьют тонкую фольгу насквозь. У них было столько же шансов отразиться от электронов внутри атома, сколько у пули — отскочить от тучи комаров.
Резерфорд поручил проведение эксперимента Гансу Гейгеру и студенту из Новой Зеландии Эрнесту Марсдену. Их радиевый пулемет палил альфа-пулями по тонкой золотой фольге. Затем Гейгер и Марсден, которые через пять лет будут палить друг в друга настоящими пулями, находясь по разные стороны Западного фронта, должны были измерять отклонения альфа-частиц. Как и следовало ожидать, никаких существенных отклонений не наблюдалось. Затем в один прекрасный день Резерфорд просунул голову в дверь лаборатории и предложил нечто совершенно нелепое. Он попросил Гейгера и Марсдена посмотреть, не отскакивают ли альфа-частицы от золотой фольги назад.
Увидеть альфа-частицу, которая отрикошетила бы от фольги назад, — это все равно что, пустив пулю в тучу комаров, увидеть, как она отскакивает и возвращается в том направлении, откуда пришла. Однако гении тем и отличаются — а Резерфорд был величайшим физиком-экспериментатором двадцатого века, — что они всегда готовы к неожиданностям и никогда не позволят предвзятости, диктуемой теорией, ограничить их поле зрения и помешать увидеть то, что являет их глазам природа. И Резерфорд был вознагражден. Спустя три дня после того, как он высказал свою просьбу, Гейгер и Марсден ворвались в его кабинет с невероятной новостью. На каждые восемь тысяч альфа-частиц, выстреливаемых в золотую фольгу, одна возвращается обратно. Как вспоминал позднее Резерфорд: «Это было, пожалуй, самым невероятным событием, какое я когда-либо переживал в моей жизни».
Резерфорду понадобились два года, чтобы обосновать ошеломительный результат, полученный Гейгером и Марсденом. Если альфа-частица натыкается на что-то внутри атома и это «что-то» не просто останавливает ее, но отбрасывает частицу так, что она возвращается тем же путем, которым пришла, значит, таинственное нечто должно быть куда массивнее альфа-частицы. Плюс ко всему оно должно занимать поразительно малую часть объема атома: уж больно крохотная получается мишень, если в нее попадает лишь одна на восемь тысяч частиц.
К 1911 году Резерфорд провел уже достаточно много экспериментов, чтобы прийти к выводу о внутренней структуре атома. Не было никаких крошечных электронов-«изюминок», сидящих в рыхлом тесте положительного заряда, как то представлял себе Томсон; вместо этого электроны порхали вокруг маленького, положительно заряженного узелка в центре атома. Мощная сила отталкивания, заставляющая альфа-частицу совершить разворот на 180°, могла возникнуть только в том случае, если природа втиснула большой положительный заряд в чрезвычайно малый объем. По оценке Резерфорда, плотный узелок положительного заряда должен был быть ужасно тяжелым — на него приходилось не менее 99,9 % массы всего атома. Резерфордовская модель атома была невообразимо далека от «рождественского пудинга» Томсона. Атом походил на миниатюрную Солнечную систему, где электроны, подобно планетам, кружились вокруг своего Солнца — атомного «ядра» [21].
Коллега Резерфорда по Кембриджскому университету, знаменитый писатель и физик Чарлз Перси Сноу (1905–1980), отметил:
«Как только Резерфорд начал заниматься радиоактивностью, это стало делом всей его жизни. Его идеи были просты, грубы и наглядны, во всяком случае, так он их излагал. Он думал об атомах так, словно они были теннисными мячами. Ему удалось открыть частицы меньше атомов и выяснить, как они движутся и сталкиваются. Иногда частицы сталкивались не так, как обычно. Исследовав эти случаи, он создал новую, но, как обычно, простую картину происходящего. Таким путем — с той же уверенностью, с какой бродит лунатик, — он пришел от неустойчивых радиоактивных атомов к открытию атомного ядра и структуры атома»[22].
Резерфорд оказался в Англии по счастливой случайности. Его стипендию Кембриджского университета поначалу выиграл другой новозеландец, обошедший Резерфорда по рейтингу. Однако в последний момент тот человек женился, и стипендия перешла к претенденту, значившемуся строчкой ниже. Резерфорд был крупным человеком с громким голосом, властными манерами и буйным характером. Однако даже в последние годы жизни, когда он был уже лордом Резерфордом, лауреатом Нобелевской премии и почитался как один из величайших физиков-экспериментаторов всех времен, у него легко появлялись слезы на глазах при мысли о том, что, не будь одного случайного события, его жизнь сложилась бы совершенно иначе.
Полнейшей неожиданностью как для Резерфорда, так и для всех остальных был размер атомного ядра. Выходило, что оно в 100 000 раз меньше самого атома. Поразительно, но атомы самым необыкновенным образом состояли из одной пустоты. По сути, они настолько «пусты», что если бы удалось выдавить из атомов все свободное пространство, то человечество, в полном его составе, уместилось бы в объеме одного кубика сахара. Но почему же атомы содержат так много пустого пространства? Или если сказать по-другому: почему они столь огромны в сравнении с их сверхмалыми ядрами? Оказывается, эти вопросы нерасторжимо связаны с другим, более фундаментальным вопросом: почему атомы существуют вообще? Ведь по законам физики их… просто не должно быть!
Законы электромагнетизма
Законы физики, о которых пошла речь, — это законы электромагнетизма. Их сформулировал в 1860-е годы шотландский физик Джеймс Клерк Максвелл. Как говорилось ранее, Максвеллу удалось свести все электрические и магнитные явления к одному компактному набору уравнений [23]. Он начал с того, что представил силу, которую магнит оказывает на кусочек металла, как действие призрачного магнитного «силового поля», распространяющегося от магнита в окружающем пространстве. Таким же образом он представил и электрическое «силовое поле», исходящее от электрических зарядов, например от тех, которые путешествуют по проволоке в виде электрического тока.
Однако теория Максвелла не просто описывала поведение электрического и магнитного полей. В ней скрывался большой сюрприз. Изучая уравнения, которые он записал, Максвелл отметил, что они допускают существование волны — волнообразного движения, проходящего сквозь электрическое и магнитное поля. Такая «электромагнитная волна» должна была распространяться в пространстве подобно ряби на поверхности пруда. И в пустом пространстве она обладала характерной скоростью.
Каково же было изумление Максвелла, когда он обнаружил, что эта скорость — скорость света!
До того ни один ученый — если не считать пионера электричества Майкла Фарадея — не заподозрил, что между электричеством, магнетизмом и светом может существовать хоть какая-то связь. Это ведь очень разные явления! Но вот же она, связь-то: уравнения Максвелла ясно показывали, что это волна электричества и магнетизма, распространяющаяся в пустом пространстве со скоростью света. Не нужно было быть гением, чтобы догадаться: эти две вещи, волна и свет, — одно и то же. Свет, понял Максвелл, и есть электромагнитная волна.
Это неожиданное открытие изменит мир до неузнаваемости. Теория Максвелла предсказывала, что если просто «потрясти» электрический ток в проволоке, то это заставит ток излучать электромагнитные волны — не свет, видимый глазом, а другие волны, более длинные, которые впоследствии получат название радиоволн. Максвелл умер в 1879 году, в возрасте 48 лет; его предсказание будет подтверждено немецким физиком Генрихом Герцем (1857–1894) в 1887-м. Еще через 14 лет, в 1901 году, Гульельмо Маркони (1874–1937) сумеет организовать первую радиосвязь через Атлантику, провозвестив эпоху мгновенной коммуникации, что сделает возможным современный мир.
Теория Максвелла гласит: электромагнитные волны порождаются любым электрическим зарядом, который получает «ускорение», — то есть зарядом, меняющим либо свою скорость, либо направление движения, либо и то и другое. «Тряска» электрического тока в проволоке ускоряет носителей тока — электроны, — вот почему такая проволока-антенна излучает радиоволны. Но тут возникает проблема с атомами. А именно: то самое явление, которое обеспечивает возможность дальней связи, полностью отменяет «планетарную» модель атома Резерфорда. Трудность здесь вот какая: электрон, обращающийся вокруг атомного ядра, постоянно изменяет направление и таким образом постоянно ускоряется. А как заряженная частица он обязан излучать электромагнитные волны, подобно маленькому радиопередатчику. Но электромагнитные волны уносят энергию от электрона. Теряя подобным образом энергию, он должен по спирали упасть на ядро менее чем за стомиллионную долю секунды. Короче говоря, атомы не должны существовать.
Но они существуют.
Мало того что атомы не расстаются с жизнью в мгновение ока, и уж тем более за стомиллионную долю секунды, — судя по всему, они стабильны уже миллиарды лет, все то время, пока существует Вселенная. На поверку их срок жизни оказался в неимоверное число раз (это число выражается единицей с 40 нулями) больше, чем тот период, который отводят атомам законы электромагнетизма. До 1998 года, когда ученые открыли непостижимую космическую «темную энергию», это было самым большим расхождением между наблюдением и предсказанием в истории науки [24].
Резерфорд был сбит с толку. Он блестяще преуспел в раскрытии внутреннего строения атома, однако, сделав это, ученый выявил крупнейший конфликт в физической науке. Эксперимент с золотой фольгой продемонстрировал, что атом — это крошечная «планетарная» система. Однако теория электромагнетизма предсказывала, что такая система категорически нестабильна — она не продержится и «мгновения ока». Это была парадоксальная ситуация, и найти из нее выход казалось почти невозможным. Тем не менее одному человеку — молодому датскому физику — это удалось.
Нильс Бор (1885–1962) приехал в Англию в 1911 году, после того как получил докторскую степень в Копенгагене, и с тех пор работал под руководством сначала Дж. Дж. Томсона, а затем Резерфорда. Он понимал, что планетарная модель атома Резерфорда, подкрепленная серьезными экспериментальными данными, вполне убедительна. Но вместе с тем он понимал, что и законы электромагнетизма, подарившие миру электромоторы и динамо-машины, убедительны в неменьшей степени. Боровское революционное разрешение атомного парадокса было одновременно и простым, и дерзким. В 1913 году Бор объявил, что законы электромагнетизма просто-напросто не действуют внутри атомов. Электроны, вращаясь вокруг ядра, не испускают электромагнитные волны и поэтому не падают по спирали на ядро. Короче говоря, известные законы физики не применимы к области сверхмалых объектов.
Свою революционную идею Бор доказывал очень просто: известные законы физики утверждают, что атомы не могут существовать, а они тем не менее существуют. Вот и всё. Однако Бор не знал, чем можно заменить известные физические законы в микроскопическом царстве. Он не понимал, почему электроны все же не падают по спирали на ядра. Объяснением этого феномена физика обязана французскому ученому Луи де Бройлю.
Частицы ведут себя как волны
Де Бройль знал о предположении Эйнштейна, что световые волны могут вести себя как частицы — фотоны, — и о том, что это предположение подтверждалось как фотоэффектом, так и эффектом Комптона. Но де Бройлю удалось — совершенно невероятным образом! — сделать шаг вперед. В своей докторской диссертации 1923 года он объявил, что не только световые волны могут вести себя подобно локализованным в пространстве частицам, но и частицы, такие, как электроны, могут вести себя как расходящиеся в пространстве волны. Все микроскопические кирпичики материи, по де Бройлю, были двулики. Всем им был свойствен особый корпускулярно-волновой дуализм.
Идея де Бройля о «волнах материи» была настолько фантастична, что большинство физиков совершенно ее проигнорировали. Однако все изменилось, когда Эйнштейн прочитал экземпляр дебройлевской диссертации. Отец фотона поразился идее де Бройля и пришел к убеждению, что в догадке французского ученого что-то есть. Теперь требовалось только продемонстрировать, что частица — например, электрон — может вести себя как волна. На практике это означало: следовало показать, что электроны могут интерферировать друг с другом, ибо как раз интерференция служит характерным признаком волн. Этот подвиг совершат в 1927 году Клинтон Дэвиссон и Лестер Джермер в США и Джордж Томсон в Шотландии. Ирония в том, что Джордж Томсон был сыном Дж. Дж. Томсона. Отец получил Нобелевскую премию, доказав, что электрон — это частица, а сын получит свою Нобелевскую премию за то, что опровергнет мнение отца и докажет: на самом-то деле электрон — это волна.
Как раз по той причине, что все микроскопические частицы ведут себя подобно волнам, то умозаключение, которое мы сделали, наблюдая за собственным отражением в оконном стекле, может быть распространено именно на все частицы. Не только фотон — каждый обитатель микроскопического мира танцует под мелодию случайности. Суперпозиции и прочие «потусторонние» квантовые феномены свойственны всем из них до последнего.
Де Бройль в своей диссертации не просто допустил, что частицы материи действуют как волны, — он разобрался в том, насколько велики эти волны материи. Величина волны частицы обратно пропорциональна ее импульсу, который представляет собой произведение массы тела на его скорость. Вообще говоря, большие объекты, которые передвигаются в окружающем нас мире, — например, «Боинг-747» или даже улитка, — обладают куда большим импульсом, чем крошечные штучки, суетящиеся в микроскопическом мире атомов. А поскольку, согласно де Бройлю, величина волны, ассоциированной с неким телом, обратно пропорциональна его импульсу, из этого следует, что волны, ассоциированные с окружающими нас вещами, намного меньше тех, которые ассоциированы с такими частицами, как электроны.
Возьмем бейсбольный мяч. Питчер подает его со скоростью около 150 километров в час. По гипотезе де Бройля, этот мяч ведет себя как волна с длиной всего лишь 10-34 метра. Это в триллион триллионов раз меньше, чем атом. Не удивительно, что до двадцатого столетия никто и не подозревал о волновых свойствах материи. Длины волн больших предметов в окружающем нас мире просто-напросто настолько умопомрачительно малы, что эти волны категорически невозможно обнаружить. Поэтому мы и не видим, как люди растекаются рябью по улице или интерферируют друг с другом усиливающим или ослабляющим образом.
А теперь представьте, что электрон летит со скоростью примерно 6000 километров в секунду. Поскольку он очень легок, его без труда можно разогнать до этой скорости, даже приложив весьма скромное напряжение в 100 вольт. Такой электрон обладает длиной волны 10-10 метров. Важность этой величины в том, что она соизмерима с расстояниями между атомами в некоторых веществах, например в металлах. Посему, если такими электронами выстрелить по металлу, появляется хорошая возможность увидеть волновые эффекты — в частности, интерференцию. Именно эту стратегию избрали Дэвиссон, Джермер и Томсон, чтобы продемонстрировать волновую природу электронов. Они обстреливали пучком быстрых электронов металлическую мишень. Атомы в металлах располагаются в строгом порядке, они равномерно распределены параллельными слоями, поэтому металлическая пластинка похожа на стопку блинов. Когда электронами стреляют по металлу, некоторые из них отскакивают от поверхностного слоя. Иные, прежде чем вылететь из металла, достигают следующего слоя. Еще какие-то проникают до третьего «блина» и отражаются только после этого. И так далее. Но главное здесь то, что все электроны, отражаемые металлом, ведут себя как волны. Следовательно, есть направления, в которых волны-электроны, отраженные от различных слоев, будут идти «в ногу», и там произойдет усиливающая интерференция. А есть направления, где они будут идти совсем уж «не в ногу», и там случится интерференция ослабевающая. Необходимо только замерить количества электронов, отлетающих от металла в разных направлениях.
Это и сделали Дэвиссон с Джермером в США, а Томсон — в Шотландии. И обнаружили они именно то, что в некоторых направлениях от металла отлетало множество электронов, а в других — просто-таки ни одного. Причем направления, в которых отскакивало много электронов, чередовались с теми, где было совсем пусто. Иначе говоря, возник рисунок интерференции — или, строго говоря, рисунок дифракции, явления, тесно связанного с интерференцией, — и это неопровержимо доказывало, что электроны действительно ведут себя как волны. Ах, какое же это было, надо полагать, удивительное зрелище! Ведь в конце-то концов, одно дело — сидеть в башне из слоновой кости и теоретизировать о существовании чего-то смехотворно абсурдного, о каких-то там волнах материи, как это делал де Бройль, и совсем другое дело — «увидеть», что происходит с электронами: все полагают их крошечными бильярдными шарами, а тут они ведут себя как рябь на поверхности пруда.
Волнам нужен простор
Волны материи, предложенные де Бройлем, должны по идее служить объяснением того, почему электрон не стремится к смерти, уносясь по крутой спирали в атомное ядро. Однако объяснение это вовсе не очевидно. Для того чтобы понять, в чем тут дело, нужно иметь в виду следующее: волне, вся суть которой в том, что она распространяется, требуется простор [25]. Электрон — самая легкая из всех известных субатомных частиц — обладает, по всей вероятности, и самой большой ассоциированной с ним волной. Это означает, что именно электрон более всего подвержен влиянию «потусторонних» квантово-волновых эффектов. А также это означает, что ему требуется больше простора, чем любой другой частице. При той скорости, с которой электрон обычно носится внутри атома, ассоциированная с ним волна, по сути, столь же велика, как сам атом. Она, вообще говоря, и определяет размер атома.
Один маленький нюанс. Можно предположить, что раз ядро атома водорода в две тысячи раз больше электрона, то волна атомного ядра по идее должна составлять одну двухтысячную волны электрона. На самом же деле волна, ассоциируемая с ядром атома, меньше волны электрона не в две тысячи, а скорее в сто тысяч раз. Такое расхождение возникает по той причине, что электрон подчиняется электромагнитному взаимодействию, тогда как частицами атомного ядра управляет куда более мощное взаимодействие — оно так и называется: сильное. Чем сильнее взаимодействие, тем быстрее движется частица, а это означает, что импульс ядра больше, чем следовало ожидать, и длина его волны куда меньше, чем одна двухтысячная длины волны электрона, вокруг ядра обращающегося.
Вот почему электроны не уносятся по спирали к ядру: они обладают сравнительно большими ассоциируемыми с ними волнами, а таким волнам нужен простор. Именно по этой причине атомы и существуют на белом свете. Но что же мешает волне электрона ужаться и занять поменьше места? Иными словами, что отталкивает электроны, если они прижимаются слишком близко к своим ядрам? Что отвечает за жесткость и упругость материи? Для того чтобы ответить на эти вопросы, надо снова вообразить электроны частицами и по-другому посмотреть на эксперимент с параллельными прорезями.
Принцип неопределенности Гейзенберга
Вспомним, что, когда фотонами обстреливают непрозрачный экран с двумя узкими параллельными прорезями, на втором экране, расположенном с некоторым интервалом позади первого, появляется рисунок из вертикальных полос. В этом частоколе линии, куда попадает большинство фотонов, перемежаются с участками, которых фотоны старательно избегают. Такой «интерференционный» рисунок обретает смысл только в том случае, если мы допустим: действительно существуют квантовые волны, ассоциированные с фотонами, и эти волны указывают фотонам, куда они должны попасть. Волны, выходящие из одной прорези, накладываются на волны, выходящие из второй прорези; они периодически усиливают или ослабляют друг друга, — вот на втором экране и возникает отчетливый рисунок из фотонов, похожий на зебровую шкуру.
Конечно, в свете догадки де Бройля ясно, что не только частицы света будут интерферировать друг с другом, если палить ими по прорезям в непрозрачном экране. Эксперимент с двумя прорезями даст тот же результат, если вместо фотонов использовать электроны, или сами атомы, или любые другие частицы. Хотя на деле чем массивнее частицы, тем меньше у них длина волны и тем труднее заставить их интерферировать. А если вы сумеете «уговорить» тяжелые частицы, чтобы они это сделали, увидеть зебровый рисунок будет не так-то просто.
Впрочем, какими бы ни были частицы, вспомним: интерференция происходит, если смешиваются две вещи (две волны накладываются друг на друга). Когда по прорезям стреляют одиночными частицами, да еще с большими интервалами, медленное выстраивание интерференционной картины на втором экране говорит о том, что каждая частица проходит сквозь обе прорези одновременно — иначе говоря, что она в один и тот же момент пребывает в двух разных местах [26]. Но что, если мы будем знать точно, через какую из прорезей проходит частица? Ясное дело: если нам это удастся, то интерференционная картина исчезнет, поскольку мы исключим возможность одновременного прохождения частицы через две прорези и смешивания ее с самой собой.
Скажу сразу: если бы интерференционная картина вдруг исчезла, это означало бы, что с частицами материи произошло что-то очень серьезное и тревожное, не говоря уже о том, что сама природа окружающей нас реальности изменилась бы коренным образом. Почему это так, можно понять, если мы вообразим, что именно нужно сделать, дабы определить, через какую прорезь проходит частица. Представим, что мы изменили масштаб эксперимента и теперь вместо фотонов, электронов или других субатомных частиц мы имеет дело с пулеметными пулями, экраном служит толстый стальной лист — допустим, толщиной в два-три сантиметра, — а две вертикальные прорези превратились в две узкие щели, пробитые в этом стальном листе. Сосредоточимся на пулях. Проходя сквозь щели, они рикошетят от стенок, и каждый раз, когда это происходит, стенки щели — а вместе с ними весь стальной лист — испытывают отдачу. Это дает нам возможность определить, через какую щель проходит пуля.
Для простоты картины вообразим, что пули, проходя сквозь щели, отскакивают от стенок и заканчивают свой путь, впиваясь в самый центр интерференционного рисунка. В этом случае мы можем сказать, что если стальной лист испытал отдачу влево, то пуля, должно быть, прошла сквозь левую щель. А если лист испытал отдачу вправо, то пуля, надо полагать, прошла через правую щель. Таким образом, теперь мы знаем, что, если нам не удается определить, сквозь какую щель проходит каждая пуля, на втором экране мы видим зебровый рисунок: полосы, усеянные пулями, перемежаются полосами, куда ни одна пуля так и не попала. А если мы обнаруживаем, сквозь какую щель пролетает каждая пуля — отмечая отдачи стального листа, — зебровый рисунок должен исчезнуть.
Теперь сосредоточимся на полосах. Что с ними должно произойти, чтобы они размылись? Ну как же! Всего-то и необходимо, чтобы пуля, которой суждено угодить именно в «пулевую» полосу, впилась либо в «пулевую» полосу, либо в «не пулевую». Этого достаточно, чтобы пули равномерно усеяли второй экран и зебровый рисунок, размывшись, превратившись в однородную серую поверхность. Вот что здесь имеется в виду: каждая пуля, несясь в воздухе, должна случайным образом хоть немного рыскать из стороны в сторону (ну хорошо, если слово «рыскать» не очень понятно, тогда «подрагивать»), — этого хватит, чтобы ее траектория стала в достаточной степени неопределенной, пуля угодит куда попало, и интерференционный рисунок перестанет существовать. А свое рыскание, или дрожание, пуля может обрести только в том случае, если она будет рикошетить от стенок щели, пробитой в стальном листе.
Иными словами, происходит следующее: уже одна только попытка определить, в какую щель пролетит пуля, наделяет ее тем самым рысканием, которое необходимо, чтобы разрушить интерференционную картину. Это рыскание — не что иное, как мера предосторожности: таким способом природа защищает квантовую теорию. Для того чтобы вести себя как волна, частица должна иметь возможность делать две вещи одновременно — или, сказать по-другому, иметь две возможности делать разные вещи, — так чтобы волны, ассоциируемые с этими неразличимыми, по сути, возможностями, могли накладываться друг на друга, или интерферировать. Если же эти возможности удается различить — путем измерения или наблюдения, что реализовалась скорее одна возможность, а не другая, — тогда уже больше нет неразличимых возможностей, а значит, нет и интерференции. Наше измерение-наблюдение делает нечто такое, что уничтожает возможность интерференции между частицами, а именно: оно наделяет частицы случайным рысканием [27].
Уточню — на примере с нашим пулеметом. Уже само обнаружение щели, сквозь которую проходит пуля, — иными словами, точное определение места, где эта пуля находится (вспомним про отдачу стенок щели), — наделяет пулю случайным рысканием и, таким образом, добавляет неопределенности ее скорости (или импульсу, что в данном случае одно и то же). В этом — вся суть! Как установил в 1927 году молодой немецкий физик Вернер Гейзенберг (1901–1976), существует компромисс: чем больше мы уверены в том, где находится частица, тем меньше мы уверены в величине ее импульса. Обратное тоже справедливо: чем больше мы уверены в том, что знаем импульс частицы, тем меньше уверены в ее местонахождении.
И это фундаментальный принцип. Речь идет в равной степени как о неодолимой неопределенности наших представлений о субатомных частицах, так и о неодолимой непредсказуемости их поведения. В повседневном мире мы точно знаем: вот человек переходит улицу на городском перекрестке и движется он со скоростью три километра в час. В микроскопическом мире мы лишены возможности с уверенностью знать обе эти вещи. Если мы знаем точно одно, это неизбежно означает, что мы остаемся в полном неведении относительно другого. Есть предельный предел — да простят мне эту тавтологию — наших знаний об окружающем мире. Вглядитесь как следует в реальность, и вы не увидите там ничего четко обрисованного. Эта реальность расплывается бессмысленным пятном с неясными очертаниями, подобно фотографии в газете, если рассматривать ее слишком близко.
Вот он — «принцип неопределенности Гейзенберга». Именно этот принцип в конечном итоге объясняет, почему атомы не съеживаются, превращаясь в ничто, и почему земля под нашими ногами твердая. Согласен: тот факт, что электроны представляют собой волны, а волнам необходим простор, — это лишь половина объяснения. Вторая половина обнаружится, стоит лишь поразмышлять, что случится с электроном, если его начнут слишком сильно прижимать к ядру. Это будет означать, что его местоположение станет известным с большой степенью точности. Но, согласно принципу неопределенности Гейзенберга, чем больше мы уверены в местоположении частицы, тем меньше мы уверены в ее импульсе. Это очень похоже на то, как если бы мы засунули пчелу в спичечный коробок. Встряхните коробок — пчела разозлится и будет с остервенением колотиться о стены своей тюрьмы. Вот электроны в атомах и есть те самые пчелы в коробках. Атомам, по словам поэта Адриана Митчелла, «на месте не сидится, им хочется повсюду пускаться в рок-н-ролл…». Когда мы ступаем по земле, наш вес сжимает атомы, из которых она состоит. Это сжатие заставляет электроны хоть чуть-чуть, но приблизиться к ядрам. А принцип неопределенности Гейзенберга понуждает их воспротивиться и оттолкнуться от ядер.
Вот почему земля твердая, а материя — плотная. Да, в частности, по причине волновой природы электронов. Но также по причине неодолимой неопределенности микроскопического мира и еще потому, что наши знания о фундаментальной реальности имеют «предельный предел». Именно об этом в конечном итоге и говорит нам тот факт, что земля под нашими ногами — твердая.