Ускорители

We use cookies. Read the Privacy and Cookie Policy

Ускорители

Богатый событиями в ядерной физике 1932 г. ознаменовался и другими важными достижениями в этой области. Главнейшим из этих достижений было расщепление ядра лития искусственно ускоренными протонами. Еще в 1922 г. Резерфорд, сравнивая ядра с хорошо защищенной крепостью, указывал, что «лишь а-частицы, как наиболее концентрированные источники энергии, являются наиболее подходящими для нападения на эти хорошо защищенные сооружения». Далее он говорил: «Если бы в нашем распоряжении были заряженные атомы с энергией, в десять раз превосходящей энергию а-частицы радия, то, вероятно, мы могли бы проникнуть в нуклеарную структуру всех атомов, а иногда вызвать их разрушение».

Частицы, ускоряемые сегодня на Серпуховском ускорителе, обладают энергией, в тысячу раз большей, чем та, о которой мечтал Резерфорд. Путь к получению частиц высокой энергии начался в 30-х годах. Именно тогда начали разрабатывать ускорители заряженных частиц. Уже в 1928 г. с помощью последовательно соединенных трансформаторных обмоток удалось получить напряжение 750 кВ. В 1931 г. Ван-де-Грааф построил электростатический ускоритель, позволяющий ускорить ионы до нескольких миллионов электрон-вольт.

В 1930 г. в Кембридже Кокрофт и Уолтон, применяя каскадный метод увеличения напряжения, получили водородные ионы, ускоренные до нескольких сот киловольт. В 1932 г., направляя усиленные таким образом ионы на литиевую мишень, они осуществили расщепление ядра 3Li7 на два ядра гелия. Ядра гелия разлетались с энергией около 8,5 МэВ. Это была первая ядерная реакция, осуществленная на ускорителе, и авторы ее Джон Кокрофт (1897-1967) и Э. Уолтон были удостоены в 1951 г. Нобелевской премии.

В 1931 г. Слоан и Лоуренс (1901-1958) построили линейный ускоритель ионов, в котором ионы, проходя через ряд цилиндров увеличивающейся длины, ускорялись высокочастотным напряжением, подобранным так, что в зазоре между цилиндрами ионы попадали в ускоряющую фазу.

Но особенно важным для развития ядерной физики было создание циклического ускорителя — циклотрона.

Принцип циклотрона был предложен Лоуренсом и Эдлефсеном в 1930 г. В 1932 г. под руководством Лоуренса был построен циклотрон с диаметром полюсных наконечников 28 см, ускоряющий протоны до 1,2 МэВ. В 1939 г. Лоуренс за изобретение циклотрона был удостоен Нобелевской премии.

В июле 1932 г. на V Международной конференции по электричеству состоялось обсуждение проблем ядерной физики. С обзорным докладом «Современное состояние физики атомного ядра» выступил Энрико ферми. В этом докладе ферми все еще держался гипотезы: «Все атомные ядра состоят из двух частиц — электронов и ядер водорода (протонов)». Далее ферми указывал, что некоторые ядра «обладают собственным механическим моментом», выраженным целым или полуцелым числом в единицах h/2п Существование момента ядра обнаруживается в таких явлениях:

а) чередование интенсивностей в полосатых спектрах;

б) сверхтонкая структура спектральных линий атомов.

ферми указывал далее, что «любая система из протонов и электронов должна:

а) подчиняться статистике Бозе — Эйнштейна или принципу Паули в зависимости от того, является ли число частиц этой системы четным или нечетным;

б) иметь собственный момент, равный целому числу или кратному целому числу, деленному на 2, в зависимости от того, четно или нечетно число частиц в системе».

Ядро азота не подчиняется этим правилам, согласно которым для ядра азота должен быть справедлив принцип Паули, в то время как наблюдения Разетти над раман-эффектом для молекулы азота показали, вне всякого сомнения, что для ядра азота справедлива статистика Бозе — Эйнштейна. «Отсюда был сделан вывод, — пишет ферми, — что эта аномалия возникает вследствие того, что ядро атома азота содержит нечетное число электронов».

Как видно, в июле 1932 г. азотная катастрофа продолжала существовать.

Ферми подробно останавливается на теории а-распада, предложенной Гамовым в 1928 г. Гамов (1904-1968), а также Герни и Кондон (1902-1974) применяли к испусканию а-частицы ядром идеи волновой механики, развитые для анализа прохождения частиц через потенциальный барьер. Эта теория была одним из достижений новой квантовой механики.

В отношении в-распада существует трудность, связанная с непрерывным спектром энергии в-частиц. «Этот факт, — писал ферми, — имеет большую теоретическую важность, поскольку он, по-видимому, находится в противоречии со всеми теориями атомного ядра, в которых предполагается справедливость принципа сохранения энергии». Ферми упоминает о гипотезе Паули, предпринятой для объяснения этого противоречия. Он пишет: «Согласно предположению Паули было бы возможно вообразить, что внутри атомного ядра находятся нейтроны, которые испускались бы одновременно с (3-частицами. Эти нейтроны могли бы проходить через большие толщи вещества, практически не теряя своей энергии, и потому были бы практически ненаблюдаемы».

Ферми пришлось употребить в своем докладе слово «нейтрон» дважды. В заключительных заметках он говорит об интерпретации Чедвиком берил-лиевого излучения:

«Продолжая опыты Боте, а также И. Кюри и ф. Жолио, Чедвик сумел доказать, что излучение бериллия способно сообщить движение также ядрам тяжелее протона; в связи с этим он выдвинул гипотезу, что излучение бериллия представляет собой не у-лучи, а нейтроны с массой, равной массе протона».

Термин «нейтрон» сохранился для нейтральных частиц с массой протона. «Нейтроны» же Паули по предложению ферми были названы на Сольвеевском конгрессе 1933 г. «нейтрино». На конгрессе же 1932 г. ферми пришлось давать разъяснение по поводу термина «нейтрон» в р-распаде. Ему резонно возразили, что нейтроны из-за их массы не могут играть той роли, какая им приписывалась гипотезой Паули, ферми отвечал, что «такими нейтронами являются не те, которые были открыты, но нейтроны с гораздо меньшей массой». Именно ферми в дальнейшем удалось построить теорию (в-распада, основанную на гипотезе нейтрино.

В 1933 г. происходило освоение идей, внесенных в ядерную физику. Помимо уже упоминавшейся конференции по атомному ядру, состоявшейся в Ленинграде в сентябре 1933 г., проблемы ядра обсуждались на Седьмом Сольвеевском конгрессе, состоявшемся в октябре 1933 г. Конгресс был очень представительным, председательствовал П. Ланжевен. В работе конгресса принимали участие Э. Резерфорд, Н. Бор, М. Склодовская-Кюри, Дж. Чед-вик, П. Блэккет, Дж. Кокрофт, В. Боте. В. Гейзенберг, Э. Шредингер, В. Паули, Э. ферми, Луи де Бройль, П. Дирак и другие физики. От советских ученых в конгрессе принимал участие А. ф. Иоффе.

На конгрессе большое место заняли выступления сотрудников Кавендиш-ской лаборатории во главе с Резерфор-дом. Кокрофт доложил о своих и Уолтона опытах по расщеплению ядер лития ускоренными протонами, Чедвик сделал доклад об открытии нейтрона, об открытии нейтрона говорили также ф. Жолио и И. Кюри, Блэккет рассказал об открытии позитрона, в котором важную роль сыграли его и Оккиалини исследования с использованием камеры Вильсона, управляемой счетчиками Гейгера — Мюллера. В этих исследованиях были открыты ливни космических частиц, состоящие из позитронов и электронов.(Первые ливни были открыты Д. В. Скобельцыным еще в 1929 г ) Лоуренс доложил об опытах с циклотроном, Гейзенберг — о протонно-нейтронной модели ядра.

Новые идеи прозвучали на Сольвеевском конгрессе во весь голос, их горячо поддерживал основоположник науки о ядре Э. Резерфорд. «Центральной фигурой на Сольвеевском конгрессе, — вспоминал Бор, — был, конечно, Резерфорд, как всегда с необыкновенной энергией принимавший участие во многих дискуссиях». Его ученики и он сам много способствовали развитию «современной алхимии», как называл Резерфорд науку о превращении ядер. Это было последнее его участие в Сольвеевском конгрессе, да и сам конгресс по существу был последним. Международное научное общение было нарушено захватом власти в Германии фашистами и второй мировой войной.

Заметим, что протонно-нейтронная модель ядра, предложенная Иваненко, была активно поддержана Гейзенбергом. Она была высказана Майораной, опубликовавшим в 1933 г. статью о модели ядра, состоящего из протонов и «нейтральных протонов». Период протонно-электронной модели ядра кончился, начался новый плодотворный период в развитии ядерной физики, проходивший под знаком протонно-нейтронной модели ядра.

Физический семинар в Копегагене. Сидят слева напрво: Бор, Гейзенберг, Паули, Гамов, Ландау