«Великий фундаментальный закон прогресса»?
«Великий фундаментальный закон прогресса»?
Во времена Максвелла наряду с голосом защитников «великих истин Библии» уже звучали голоса отвергателей всякой религии. Маркс уже определил религию как «опиум народа» и был не первым ее разоблачителем. На роль антипода религии выдвигалась обычно наука или «научная философия».
За создание такой философии первым взялся французский философ Огюст Конт. В 1830-х годах он опубликовал многотомный «Курс позитивной философии», который начал со своего открытия:
Изучение развития человеческого познания приводит к открытию великого фундаментального закона прогресса: каждая ветвь нашего знания последовательно проходит через три различные теоретические состояния: Религиозное, или основанное на вымысле; Метафизическое, или абстрактное; и Научное, или позитивное. Отсюда возникают три философии, каждая из которых исключает другие. На последней — позитивной — стадии разум, оставляя тщетные поиски абсолютных понятий, поиски происхождения и цели вселенной и поиски причин явлений, изучает законы явлений, т. е. неизменяемые отношения их последовательности и сходства. <…> Прогресс индивидуального разума — не только иллюстрация, но и косвенное свидетельство прогресса общего разума. Отправная точка личности и народа одна и та же, фазы разума человека соответствуют эпохам разума народа. Каждый из нас знает, оглядываясь на свою собственную историю, что он был теологом в детстве, метафизиком в юности и естествоиспытателем в зрелости.
Ясно, что сам философ считал себя прошедшим все три фазы. Но не счел нужным пояснить, как он обобщил свой личный опыт — или мнение о своем опыте — на все человечество и почему каждого взрослого записал в естествоиспытатели. Для историка науки исследовательский талант — не менее особый, чем талант художника или музыканта. Признать естествоиспытателем самого О.?Конта трудно из-за отсутствия хотя бы малого его вклада в естествознание.
Историки знают, что в его «великий закон прогресса» не укладываются Галилей, Кеплер и Ньютон, которые не видели противоречия между своими религиозными взглядами и своими научными исследованиями. Можно предположить, что французский философ, изучая их достижения по учебникам, попросту не знал о религиозности великого итальянца, великого немца и великого англичанина. Труднее думать, что философ не знал о взглядах своих соотечественников Декарта и Паскаля, сделавших важные вклады в новую физику и вместе с тем недвусмысленно выразивших свою религиозность.
Похоже, философ не изучал биографий физиков и не знал, что дар естествоиспытателя проявляется обычно уже в детстве — и безо всякой теологии. Когда О.?Конт излагал свою позитивистскую философию, в не столь уж далекой Шотландии один такой естествоиспытатель вступил на путь познания в свои неполные три года. Вот что его мама писала своей сестре:
У него масса дел с дверями, замками, ключами и т. п., а с языка не сходит: «Покажи мне, как это делается». Он исследует скрытые маршруты проволок к колокольчикам [для вызова слуг в разные комнаты], путь, которым вода течет из пруда через забор, мимо кузницы, к морю, где плавают корабли. Колокольчики наши не заржавеют: он караулит на кухне, а Мэгги бегает по дому и звонит во все по очереди, или звонит он сам и посылает Бесси наблюдать и кричать ему о результате.
Этому мальчику предстояло стать великим физиком и глубоко религиозным человеком, вопреки «великому фундаментальному закону прогресса». Но философ О. Конт об этом уже не узнает. Не узнает о великих научных достижениях повзрослевшего мальчика — Джеймса Максвелла, который верил в Бога и в то, что мир познаваем. Не узнает философ и о том, что всего через несколько лет после его смерти рухнет его смелый философский прогноз о границах познания: «Мы никогда не сможем ничего узнать о химическом или минералогическом составе планет», «людям никогда не охватить своими понятиями весь звездный мир», «при любом прогрессе наших знаний мы навсегда останемся на неизмеримом расстоянии от понимания вселенной».
Почему философ О. Конт так уверен? Потому что он не просто философ, а создатель «окончательной» философии — позитивно научной. В его «Курсе позитивной философии» наибольшую часть составляет описание всех наук, начиная с точных: математики, астрономии, физики, химии. Он уверенно рассуждает о научных материях, о заслугах и недоработках людей науки, вводит собственные термины, как, например, «барология», «термология», «электрология». При этом обходится без формул. Изучив все науки, он понял, что именно движет научным познанием:
В науке имеется гармония между нашими потребностями и нашими знаниями. Нам нужно знать лишь то, что действует на нас так или иначе, и воздействие на нас становится, в свою очередь, нашим средством познания…
Для нас чрезвычайно важно знать законы Солнечной системы, и в этом мы достигли высокой точности; а если знание звездной вселенной запретно для нас, то ясно, что оно нам и не даст ничего, кроме удовлетворения нашей любознательности.
Важны, стало быть, лишь потребности реальные, практические, материальные, а не простая любознательность.
Максвелл думал иначе:
Не потому, что мы химики или физики, нас притягивает к сути всего материально сущего, а потому, что все мы принадлежим к роду человеческому, наделенному стремлением все глубже и глубже проникать в природу вещей.
О том же сказал Андрей Сахаров: «Из любопытства выросла фундаментальная наука». И первой ее целью назвал ее саму: «Наука как самоцель, отражение великого стремления человеческого разума к познанию. Это одна из тех областей человеческой деятельности, которая оправдывает само существование человека на земле». И лишь второй целью назвал практическое значение науки.
Быть может, с философской точки зрения, все это и неверно, но физики, пожалуй, лучше знают, что движет ими в исследовательской работе. Стоит напомнить: Максвелл и Сахаров не были чистыми теоретиками. Первой научной проблемой, за которую взялся Максвелл, было восприятие цвета, и результатом его исследований стала первая в истории цветная фотография. Научно-техническая карьера Сахарова началась с изобретения прибора по магнитному контролю качества, а первую славу ему принесло изобретение термоядерной бомбы и термоядерного реактора.
Философ О. Конт ничего не открыл и не изобрел в науке и технике, а, строя свою научную и последнюю философию, считал, что с наукой в общем-то уже все ясно и пора подводить философский итог всем наукам. Серьезных нерешенных проблем он не видел, а мелкими вопросами философу заниматься не к лицу. Не упомянул он, в частности, линии Фраунгофера, открытые за 20 лет до основания «позитивной философии». А ведь странные темные линии в солнечном спектре говорили нечто о Солнце, пусть пока и непонятное. Можно было думать, что, расшифровав эти линии, физики узнают нечто о составе этого небесного тела. И тогда философский прогноз непознаваемости не был бы так смешон для нынешних читателей.
По мнению философа, наука работает просто. «Со времен Бэкона, — напомнил он, — все здравые умы повторяли, что не может быть никакого реального знания кроме как на основе наблюдаемых фактов». А добывает реальное знание наука, «изучая законы явлений, т. е. неизменяемые отношения их последовательности и сходства, для чего использует рассуждения и наблюдения, надлежаще соединенные. Объяснение фактов — это просто установление связи между отдельными явлениями и некоторыми общими фактами, число которых постоянно уменьшается по мере прогресса науки».
Вот и все. И никаких чудес. Вспоминаются слова Эйнштейна о позитивистах, «гордых тем, что не только избавили этот мир от богов, но и разоблачили все чудеса».
Фрэнсис Бэкон, конечно, был прав, подчеркивая наблюдательную основу естествознания. И дважды прав в ту эпоху, когда царила аристотелевская «словесная» наука. Но свести науку к наблюдениям — подобно тому, чтобы свести балет к упражнению мышц. Кроме наблюдений, в фундаментальной физике необходим талантливый человек, который, размышляя над опытами, иногда — чудесным образом — изобретает понятия, прямо не наблюдаемые, но позволяющие связать опытные факты.
Так Галилей «изобрел» пустоту, а Ньютон — всемирное тяготение. Так была «изобретена» молекула, хоть и с древнеатомной подсказкой.
Следующее чудо совершил Максвелл, изобретя электромагнитное поле.
Электричество, магнетизм и электромагнетизм
Слово «электромагнитный» возникло в 1820 году, за 10 лет до рождения Максвелла, когда датский физик Эрстед обнаружил связь между электрическими и магнитными явлениями. Делая опыт с электрическим током, он заметил, что магнитная стрелка, случайно оказавшаяся рядом, слегка поворачивается при включении и выключении тока. То, что новое явление открыл именно Эрстед, — случайность, но само открытие было долгожданным. Впрочем, не так уж и долго — около трех десятилетий. А сами электрические и магнитные явления были известны уже более двух тысячелетий, и ничто не указывало на их связь. Они совершенно непохожи. Электричество возникало при натирании, например, янтаря мехом, а магнитным свойством обладали некоторые «камни».
За три десятилетия до открытия Эрстеда в изучении электричества и магнетизма произошло важное событие — появились количественные законы. Французский физик Кулон измерил силу, действующую между двумя электрическими зарядами, и силу, действующую между двумя магнитными зарядами-полюсами. Оказалось, что два эти закона одинаково определяют притяжение и отталкивание соответствующих зарядов, что намекало и на какую-то общность двух разных явлений. Намек оправдался в 1820 году, когда Эрстед обнаружил действие электрического тока на магнит. Следовало найти закон, как это действие зависит от силы тока и от расположения магнита.
Следующий шаг сделал французский физик Ампер. Он обнаружил, что магнит действует на ток, а ток, идущий по проволочной спирали, действует как постоянный магнит. Отсюда он сделал вывод, что никакого магнетизма, в сущности, нет, что каждый магнит — это множество внутренних круговых токов, скажем, молекулярного масштаба. Приняв эту новейшую идею, знакомый уже нам философ О.?Конт назвал электрологией всю область электрических и магнитных явлений.
Придумать название области проще, чем открыть законы, управляющие ею. Закон взаимодействия двух токов удалось сформулировать, но был он гораздо сложнее закона Кулона и никак с ним не связан. Получалось, что неподвижные заряды взаимодействуют по одному закону, а начиная двигаться — по другому.
Еще одна странность была в том, что закон Кулона в точности повторял закон всемирного тяготения с тем лишь отличием, что тяготение — всегда притяжение, а в электричестве и магнетизме бывает еще и отталкивание. Взаимодействие токов напоминало гравитацию своим действием на расстоянии. Иначе и быть не могло: все находились под впечатлением великих успехов Ньютона.
Сам-то Ньютон, размышляя над движением планет, принял дальнодействие отнюдь не с легким сердцем. Не зря с этой идеей конкурировала очень наглядная вихревая гипотеза — идея близкодействия. Видя на ровной поверхности реки крутящуюся щепку, резонно думать, что в данном месте водоворот, который и движет щепку. Аналогично, видя вращение планет, предполагали, что в пространстве вокруг Солнца вихри чего-то невидимого несут с собой все планеты. На роль источника такого небесного вихря претендовало Солнце, вращение которого обнаружил еще Галилей. А саму невидимую материю называли «эфир» — аристотелевское слово для небесного материала. Оставалось выяснить законы эфирного движения. Главным автором вихревой идеи был Рене Декарт — великий французский математик, физик и философ.
Несколько десятилетий Британию и континент разделяло, помимо пролива Ла-Манш, еще и различие в представлениях о причинах планетного движения. Наука Британии приняла не наглядный, но точный закон всемирного тяготения, а наука континентальной Европы надеялась найти наглядное вихревое объяснение. Бесплодность этих надежд и плодотворность не-наглядного закона сделали свое дело, отправив невидимые вихри в архив истории.
Полтора века спустя, ко времени Максвелла, континентальные физики, став бо?льшими ньютонианцами, чем сам Ньютон, искали законы электричества и магнетизма лишь в Ньютоновых рамках. Они готовы были как угодно усложнять законы, лишь бы не выйти за эти проверенные рамки.
Самой впечатляющей проверкой стало открытие планеты Нептун в 1846 году — открытие почти чисто теоретическое, как говорилось, на кончике пера. «Почти», потому что путь к открытию начался с малых нестыковок наблюдений и теории. Планета Уран двигалась не совсем так, как ей полагалось. Тогда астрономы предположили, что причина нестыковок — неизвестная планета, своим притяжением сбивающая Уран с «пути истинного». За дело взялись астрономы-теоретики и, пользуясь лишь законами Ньютона, вычислили, куда надо направить телескоп, чтобы увидеть новую планету. Астрономы-наблюдатели направили и увидели!
Этот триумф ньютонианства еще более упрочил идею дальнодействия. Конечно, электричество — не гравитация, но и в «электрологии» закон Кулона и закон Ампера были законами дальнодействия.
Лишь среди соотечественников Ньютона нашлись такие, для кого наблюдаемые явления были важнее унаследованных идей. Ключевым стало новое электромагнитное явление, открытое в год рождения Максвелла. Открытие сделал Майкл Фарадей.
Данный текст является ознакомительным фрагментом.