Симметрии асимметричной Вселенной
Симметрии асимметричной Вселенной
Научный синоним слову «красота» — понятие «симметрия», математически точное, важное в физике и, сверх того, наглядное. Простой пример — зеркальная симметрия бабочки: если ее отразить в зеркале, правое крыло станет на место левого, но никакой разницы не заметить. Всякая симметрия — это закономерность формы, в силу которой форма эта не меняется при каких-то переменах.
Такое свойство, выраженное на языке математики, стало инструментом физики в изучении устройства природы. Физика прошла долгий путь, прежде чем в своих законах разглядела проявления глубинных симметрий мироздания. Все знают, что вертикально поставленный и закрученный волчок стоит на одной точке и не падает. Но почему? Потому что не знает, куда упасть: все направления, поперечные его оси, равноправны — все направления в пространстве симметричны относительно этой оси. Такая симметрия определяет главный закон волчка — закон сохранения момента импульса.
Понятие симметрии — одно из самых работоспособных в физике. Поведение не только волчка, но и атома и атомной бомбы определяются симметрией. Теоретик всегда ищет максимально симметричное упрощение своей задачи. А всякий фундаментальный физический закон раскрывает некую симметрию природы. Если же обнаруживается какая-то асимметрия, то это — проблема для теоретика.
«Электродинамика Максвелла в применении к движущимся телам приводит к асимметрии, несвойственной самим явлениям», — так Эйнштейн начал статью о теории относительности. Созданием этой теории он преодолел асимметрию, которая оказалась лишь видом сбоку на глубинную симметрию природы.
Другой триумф симметрии в физике обязан Полю Дираку. В конце 1920-х годов, стараясь соединить теорию относительности и квантовую механику, он получил элегантное уравнение для электрона. Вскоре, однако, обнаружилось, что уравнение описывало еще и другую частицу — в чем-то очень похожую на электрон, а в чем-то противоположную. По массе эта частица совпадала с электроном, а по заряду была противоположной. Настолько противоположной, что встреча этой частицы с электроном привела бы к их аннигиляции, то есть взаимоуничтожению.
Никаких частиц, кроме электронов и протонов, физика тогда не знала, но Дирак поверил в симметрию своего уравнения и предсказал новую частицу, назвав ее антиэлектроном. Вскоре экспериментаторы обнаружили в космических лучах такую частицу, а назвали позитроном — из-за ее позитивного заряда. Для теоретиков же главное свойство новой частицы — быть антикопией электрона. Позже были открыты другие элементарные частицы с их антикопиями, которым уже давали правильные имена: антипротон, антинейтрон, антинейтрино… Когда частица и ее античастица при встрече аннигилируют, рождаются новые пары частица-античастица или частицы света — фотоны, наследующие суммарную энергию родительской пары.
Мощь симметрии в объяснении реального мира убедила Дирака в том, что «физические законы должны обладать математической красотой». А история его успеха — одна из любимых у физиков-теоретиков, включая Сахарова. Когда он как-то показывал Лидии Чуковской свою способность писать зеркально, то первым делом написал «электрон + позитрон = 2 фотона». Затем написал ее имя-отчество одновременно двумя руками в противоположных направлениях. Она попыталась повторить его фокус, но, оказалось, что писать симметрично дается не всем.
Из архива Е.Ц. Чуковской
А если бы и Лидия Корнеевна владела обеими руками одинаково и писала бы научной латиницей, получился бы у них автограф бабочкой:
Зеркальная симметрия, или симметрия бабочки, причастна к самой успешной идее Сахарова в космологии. В 1966 году, уже составив себе научный план на 16 лет вперед, он обратил внимание на странную асимметрию: античастиц в окружающей нас Вселенной очень мало, хотя для теоретиков вещество и антивещество имели равное право на существование. После того как экспериментаторы в 1932 году открыли антиэлектрон-позитрон, следующую античастицу — антипротон — удалось наблюдать лишь 33 года спустя. И лишь в конце века экспериментаторы сумели из антипротонов и антиэлектронов сделать атомы антиводорода. Сделали всего несколько штук, и прожили эти атомы лишь миллиардные доли секунды — до первой встречи с обычным веществом и аннигиляции.
Поясняя в популярной статье, что такое антивещество, Сахаров указал, что «аннигиляция 0,3 г антивещества с 0,3 г вещества даст эффект взрыва атомной бомбы», — вторая профессия дала о себе знать. Итак, соприкосновение двух таблеток с ноготок привело бы к такому же взрыву, как 20 тысяч тонн — десять эшелонов — обычной взрывчатки.
После такого пояснения уже не сочувствуешь экспериментаторам, создающим антивещество. Но можно посочувствовать теоретикам. Ведь все эксперименты с античастицами ничего не изменили в том теоретическом равноправии вещества и антивещества, о котором узнали еще в 1932 году. Как же свести концы с концами — теоретические с эмпирическими? Как объяснить, что равноправные вещество и антивещество так неравно представлены во Вселенной? На этот вопрос и искал ответ Сахаров.
Наиболее весомую часть вещества составляют ядерные частицы — протоны, нейтроны и их близкие родственники. Это семейство физики назвали барионами. А видимое отсутствие антибарионов назвали барионной асимметрией Вселенной.
Пока физики смотрели на Вселенную просто как на собрание всевозможных астрономических объектов, можно было думать, что вещество преобладает лишь в космических окрестностях Земли, а где-то есть и звезды, и планеты из антивещества. Астрофизики искали признаки антивещества в космосе. Писатели-фантасты устраивали драматические встречи земного космического корабля с неземным и, возможно, состоящим из антивещества. А остряки предложили способ узнать, не из антимира ли прилетел корабль, — если среди теоретиков там преобладают антисемиты.
Ситуация изменилась после открытия в 1965 году реликтового космического излучения. Даже скептики поверили, что к Вселенной можно относиться как к единому физическому объекту с историей, определяемой законами физики. Стало ясно, что Вселенная когда-то была очень горячей. Оставшееся от того времени реликтовое излучение остыло до температуры лишь на три градуса выше абсолютного нуля, но зато это излучение заполняет все пространство Вселенной. А обычное вещество сосредоточено в звездах и планетах, разделенных огромными расстояниями.
Если излучение и вещество пересчитать на частицы — фотоны и барионы, то окажется, что сегодня на один барион приходится около миллиарда фотонов — сегодняшних «еле теплых» фотонов.
А что было вчера? Вчера, когда Вселенная была меньше в размерах, фотоны — по законам физики — были горячее. И если углубиться в прошлое достаточно далеко, то был момент, когда энергии среднего фотона хватало, чтобы родить пару барион-антибарион. До того момента фотоны легко превращались в такие пары, а всякая пара при встрече так же легко превращалась в фотоны — аннигилировала. Поэтому в то горячее время подобных пар было примерно столько же, сколько фотонов. А значит, пар барион-антибарион было в миллиард раз больше, чем дошедший до наших дней избыток барионов над антибарионами. Нынешние барионы остались с тех пор, как фотоны остыли настолько, что их энергии уже не хватало на рождение новой пары.
Значит, в юной Горячей Вселенной барионов было лишь на одну миллиардную часть больше, чем антибарионов. Так что барионная асимметрия, присущая природе, не просто мала, а вызывающе мала.
Сахарову, во всяком случае, было «трудно представить себе», что изначально, по природе вещей, на 1?000?000?000 фотонов приходилось столько же антибарионов, а барионов всего на одну штуку больше — 1?000?000?001. Такие изначальные соотношения, пояснял Сахаров, «режут глаз»: «Именно это обстоятельство (как видит читатель, из области интуиции, а не дедукции) и было исходным стимулом для многих работ по барионной асимметрии, в том числе и моей».
Было оно стимулом и для Стивена Вайнберга, нобелевского лауреата, написавшего в своей книге о ранней Вселенной «Первые три минуты»:
Число барионов, приходившееся на один фотон, могло вначале иметь какую-то разумную величину, возможно, близкую к единице, а затем могло упасть до нынешнего малого значения из-за образования многих фотонов. Загвоздка здесь в том, что никому не удалось предложить механизм образования таких лишних фотонов. Я сам пытался что-нибудь придумать в этом роде, но безуспешно.
Лишь помянув некие «нестандартные возможности», Вайнберг принял барионную асимметрию как факт, не поддающийся объяснению.
К выходу книги Вайнберга на русском языке в 1981 году стало ясно, что зря он проигнорировал нестандартную возможность, открытую Сахаровым в 1967-м. Этой возможности посвятил специальное дополнение Зельдович, под редакцией которого выходил русский перевод книги. Но и сам Зельдович, первым узнавший о сахаровской идее, долго считал ее слишком нестандартной, чтобы быть правильной. Сахаров вспоминает их разговор 1967 года:
Яков Борисович спросил, какая из моих чисто теоретических работ больше всего мне нравится. Я сказал: «Барионная асимметрия Вселенной». Он как-то весь сморщился, сжался: «Это та работа, где барионный заряд не сохраняется и время течет в обратную сторону?» — «Да, та самая». Зельдович промолчал, но было ясно, что он сильно сомневается в ценности этих моих идей.
Эти идеи Сахаров изложил в надписи на экземпляре статьи, подаренной близкому коллеге:
Из эффекта С. Окубо
при большой температуре
для Вселенной сшита шуба
по ее кривой фигуре.
О чем говорит этот научно-популярный стишок?
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Нарушение симметрии
Нарушение симметрии В фазовых переходах нет ничего нового. Вспомним хотя бы нашу жизнь. В своей книге «Переходы» (Passages) Гейл Шихи подчеркивает, что жизнь — не постоянный поток впечатлений, как часто кажется, а прохождение нескольких этапов, с характерными для каждого из
Колонизация Вселенной
Колонизация Вселенной Почти все ученые, занимавшиеся вопросами гибели Вселенной, — от Бертрана Рассела до современных космологов — полагали, что разумная жизнь окажется почти беспомощной перед лицом неизбежной, окончательной агонии Вселенной.Даже теория о том, что
Симметрии асимметричной Вселенной
Симметрии асимметричной Вселенной Научный синоним слову «красота» — понятие «симметрия», математически точное, важное в физике и, сверх того, наглядное. Простой пример — зеркальная симметрия бабочки: если ее отразить в зеркале, правое крыло станет на место левого, но
МАСШТАБЫ ВСЕЛЕННОЙ
МАСШТАБЫ ВСЕЛЕННОЙ Наше путешествие начинается в привычном нам масштабе — том самом, в котором мы живем, пользуемся разными вещами, видим и трогаем их. Неслучайно именно один метр — не одна миллионная его доля и не десять тысяч метров — лучше всего соответствует размеру
Содержимое Вселенной
Содержимое Вселенной «Что там?» — привычный вопрос людей, вглядывающихся в небо.Попытки астрономии ответить на него в отношении всей Вселенной то дразнят нас своими поразительными ответами, то обескураживают столь же поразительными вопросами. Содержимое всей
Жизнь во Вселенной
Жизнь во Вселенной 107. Как жизнь начиналась? Определение жизни трудное, но выглядит приблизительно так: жизнь это самоподдерживающаяся химическая система, способная следовать дарвиновской эволюции.Нет сомнения, что жизнь может возникнуть во Вселенной. Посмотрите в
9. Модели Вселенной
9. Модели Вселенной Ни один физик не оспаривает сегодня специальную теорию относительности, и лишь немногие оспаривают основные положения общей теории относительности. Правда, общая теория относительности оставляет многие важные проблемы нерешенными. Несомненно и то,
2. Вкратце о Вселенной
2. Вкратце о Вселенной Вселенная безбрежна и невероятно прекрасна. Удивительно проста в одних своих проявлениях и невероятно сложна в других. Из всего несметного многообразия понятий, относящихся ко Вселенной, нам сейчас понадобится лишь несколько – о них