Симметрии асимметричной Вселенной

We use cookies. Read the Privacy and Cookie Policy

Симметрии асимметричной Вселенной

Научный синоним слову «красота» — понятие «симметрия», математически точное, важное в физике и, сверх того, наглядное. Простой пример — зеркальная симметрия бабочки: если ее отразить в зеркале, правое крыло станет на место левого, но никакой разницы не заметить. Всякая симметрия — это закономерность формы, в силу которой форма эта не меняется при каких-то переменах.

Такое свойство, выраженное на языке математики, стало инструментом физики в изучении устройства природы. Физика прошла долгий путь, прежде чем в своих законах разглядела проявления глубинных симметрий мироздания. Все знают, что вертикально поставленный и закрученный волчок стоит на одной точке и не падает. Но почему? Потому что не знает, куда упасть: все направления, поперечные его оси, равноправны — все направления в пространстве симметричны относительно этой оси. Такая симметрия определяет главный закон волчка — закон сохранения момента импульса.

Понятие симметрии — одно из самых работоспособных в физике. Поведение не только волчка, но и атома и атомной бомбы определяются симметрией. Теоретик всегда ищет максимально симметричное упрощение своей задачи. А всякий фундаментальный физический закон раскрывает некую симметрию природы. Если же обнаруживается какая-то асимметрия, то это — проблема для теоретика.

«Электродинамика Максвелла в применении к движущимся телам приводит к асимметрии, несвойственной самим явлениям», — так Эйнштейн начал статью о теории относительности. Созданием этой теории он преодолел асимметрию, которая оказалась лишь видом сбоку на глубинную симметрию природы.

Другой триумф симметрии в физике обязан Полю Дираку. В конце 1920-х годов, стараясь соединить теорию относительности и квантовую механику, он получил элегантное уравнение для электрона. Вскоре, однако, обнаружилось, что уравнение описывало еще и другую частицу — в чем-то очень похожую на электрон, а в чем-то противоположную. По массе эта частица совпадала с электроном, а по заряду была противоположной. Настолько противоположной, что встреча этой частицы с электроном привела бы к их аннигиляции, то есть взаимоуничтожению.

Никаких частиц, кроме электронов и протонов, физика тогда не знала, но Дирак поверил в симметрию своего уравнения и предсказал новую частицу, назвав ее антиэлектроном. Вскоре экспериментаторы обнаружили в космических лучах такую частицу, а назвали позитроном — из-за ее позитивного заряда. Для теоретиков же главное свойство новой частицы — быть антикопией электрона. Позже были открыты другие элементарные частицы с их антикопиями, которым уже давали правильные имена: антипротон, антинейтрон, антинейтрино… Когда частица и ее античастица при встрече аннигилируют, рождаются новые пары частица-античастица или частицы света — фотоны, наследующие суммарную энергию родительской пары.

Мощь симметрии в объяснении реального мира убедила Дирака в том, что «физические законы должны обладать математической красотой». А история его успеха — одна из любимых у физиков-теоретиков, включая Сахарова. Когда он как-то показывал Лидии Чуковской свою способность писать зеркально, то первым делом написал «электрон + позитрон = 2 фотона». Затем написал ее имя-отчество одновременно двумя руками в противоположных направлениях. Она попыталась повторить его фокус, но, оказалось, что писать симметрично дается не всем.

Из архива Е.Ц. Чуковской

А если бы и Лидия Корнеевна владела обеими руками одинаково и писала бы научной латиницей, получился бы у них автограф бабочкой:

Зеркальная симметрия, или симметрия бабочки, причастна к самой успешной идее Сахарова в космологии. В 1966 году, уже составив себе научный план на 16 лет вперед, он обратил внимание на странную асимметрию: античастиц в окружающей нас Вселенной очень мало, хотя для теоретиков вещество и антивещество имели равное право на существование. После того как экспериментаторы в 1932 году открыли антиэлектрон-позитрон, следующую античастицу — антипротон — удалось наблюдать лишь 33 года спустя. И лишь в конце века экспериментаторы сумели из антипротонов и антиэлектронов сделать атомы антиводорода. Сделали всего несколько штук, и прожили эти атомы лишь миллиардные доли секунды — до первой встречи с обычным веществом и аннигиляции.

Поясняя в популярной статье, что такое антивещество, Сахаров указал, что «аннигиляция 0,3 г антивещества с 0,3 г вещества даст эффект взрыва атомной бомбы», — вторая профессия дала о себе знать. Итак, соприкосновение двух таблеток с ноготок привело бы к такому же взрыву, как 20 тысяч тонн — десять эшелонов — обычной взрывчатки.

После такого пояснения уже не сочувствуешь экспериментаторам, создающим антивещество. Но можно посочувствовать теоретикам. Ведь все эксперименты с античастицами ничего не изменили в том теоретическом равноправии вещества и антивещества, о котором узнали еще в 1932 году. Как же свести концы с концами — теоретические с эмпирическими? Как объяснить, что равноправные вещество и антивещество так неравно представлены во Вселенной? На этот вопрос и искал ответ Сахаров.

Наиболее весомую часть вещества составляют ядерные частицы — протоны, нейтроны и их близкие родственники. Это семейство физики назвали барионами. А видимое отсутствие антибарионов назвали барионной асимметрией Вселенной.

Пока физики смотрели на Вселенную просто как на собрание всевозможных астрономических объектов, можно было думать, что вещество преобладает лишь в космических окрестностях Земли, а где-то есть и звезды, и планеты из антивещества. Астрофизики искали признаки антивещества в космосе. Писатели-фантасты устраивали драматические встречи земного космического корабля с неземным и, возможно, состоящим из антивещества. А остряки предложили способ узнать, не из антимира ли прилетел корабль, — если среди теоретиков там преобладают антисемиты.

Ситуация изменилась после открытия в 1965 году реликтового космического излучения. Даже скептики поверили, что к Вселенной можно относиться как к единому физическому объекту с историей, определяемой законами физики. Стало ясно, что Вселенная когда-то была очень горячей. Оставшееся от того времени реликтовое излучение остыло до температуры лишь на три градуса выше абсолютного нуля, но зато это излучение заполняет все пространство Вселенной. А обычное вещество сосредоточено в звездах и планетах, разделенных огромными расстояниями.

Если излучение и вещество пересчитать на частицы — фотоны и барионы, то окажется, что сегодня на один барион приходится около миллиарда фотонов — сегодняшних «еле теплых» фотонов.

А что было вчера? Вчера, когда Вселенная была меньше в размерах, фотоны — по законам физики — были горячее. И если углубиться в прошлое достаточно далеко, то был момент, когда энергии среднего фотона хватало, чтобы родить пару барион-антибарион. До того момента фотоны легко превращались в такие пары, а всякая пара при встрече так же легко превращалась в фотоны — аннигилировала. Поэтому в то горячее время подобных пар было примерно столько же, сколько фотонов. А значит, пар барион-антибарион было в миллиард раз больше, чем дошедший до наших дней избыток барионов над антибарионами. Нынешние барионы остались с тех пор, как фотоны остыли настолько, что их энергии уже не хватало на рождение новой пары.

Значит, в юной Горячей Вселенной барионов было лишь на одну миллиардную часть больше, чем антибарионов. Так что барионная асимметрия, присущая природе, не просто мала, а вызывающе мала.

Сахарову, во всяком случае, было «трудно представить себе», что изначально, по природе вещей, на 1?000?000?000 фотонов приходилось столько же антибарионов, а барионов всего на одну штуку больше — 1?000?000?001. Такие изначальные соотношения, пояснял Сахаров, «режут глаз»: «Именно это обстоятельство (как видит читатель, из области интуиции, а не дедукции) и было исходным стимулом для многих работ по барионной асимметрии, в том числе и моей».

Было оно стимулом и для Стивена Вайнберга, нобелевского лауреата, написавшего в своей книге о ранней Вселенной «Первые три минуты»:

Число барионов, приходившееся на один фотон, могло вначале иметь какую-то разумную величину, возможно, близкую к единице, а затем могло упасть до нынешнего малого значения из-за образования многих фотонов. Загвоздка здесь в том, что никому не удалось предложить механизм образования таких лишних фотонов. Я сам пытался что-нибудь придумать в этом роде, но безуспешно.

Лишь помянув некие «нестандартные возможности», Вайнберг принял барионную асимметрию как факт, не поддающийся объяснению.

К выходу книги Вайнберга на русском языке в 1981 году стало ясно, что зря он проигнорировал нестандартную возможность, открытую Сахаровым в 1967-м. Этой возможности посвятил специальное дополнение Зельдович, под редакцией которого выходил русский перевод книги. Но и сам Зельдович, первым узнавший о сахаровской идее, долго считал ее слишком нестандартной, чтобы быть правильной. Сахаров вспоминает их разговор 1967 года:

Яков Борисович спросил, какая из моих чисто теоретических работ больше всего мне нравится. Я сказал: «Барионная асимметрия Вселенной». Он как-то весь сморщился, сжался: «Это та работа, где барионный заряд не сохраняется и время течет в обратную сторону?» — «Да, та самая». Зельдович промолчал, но было ясно, что он сильно сомневается в ценности этих моих идей.

Эти идеи Сахаров изложил в надписи на экземпляре статьи, подаренной близкому коллеге:

Из эффекта С. Окубо

при большой температуре

для Вселенной сшита шуба

по ее кривой фигуре.

О чем говорит этот научно-популярный стишок?

Данный текст является ознакомительным фрагментом.