1. Скалярные, векторные и тензорные поля

We use cookies. Read the Privacy and Cookie Policy

1. Скалярные, векторные и тензорные поля

В основном тексте и далее в Дополнениях мы используем понятия скалярного, векторного и тензорного полей. Чтобы не было дискомфорта при встрече с этими терминами, дадим некоторые пояснения. Лучше начать с вектора. В обычном 3-мерном пространстве он определяется тремя компонентами – проекциями на оси x, y, z. Если представить себе n-мерное пространство, то для определения в нем вектора нужно задать набор n компонент. Тогда говорят, что задано поле вектора и его обозначают, например, va, где a пробегает все координаты, от 1 до n, в общем случае, если мы их пронумеровали. А все n значений va и есть те самые n компонент, часто их записывают в виде строки va = [v1, v2, …, vn–1, vn] или столбца

Величина va (набор значений) с одним индексом называется тензором 1-го ранга. Поле скаляра, в отличие от вектора, в каждой точке пространства, независимо от его размерности, имеет одну компоненту (функцию от пространственных координат) и записывается как величина без индексов, скажем, v. Скаляр, как величина без значков, является тензором нулевого ранга. В тексте очень часто встречается понятие метрического тензора gab, который и описывает гравитационное поле. Теперь, имея представление о векторе и скаляре, как о тензорах, смело можно говорить, что метрика – это тензор 2-го ранга и все его компоненты объединены в матрицу. В 4-мерном пространстве-времени это выглядит так:

В силу симметрии gab = gba независимых компонент из 16-ти остается 10. Поле метрического тензора задано, если в каждой точке пространства-времени задано 10 функций, представляющих эту матрицу. Аналогичные рассуждения справедливы для других тензоров второго ранга. Если бы мы хотели рассмотреть какой-нибудь тензор 3-го ранга, мы должны были представить величину с 3-мя индексами, а ей сопоставить 3-мерную матрицу (куб). Важно отметить, что все тензоры обладают общим свойством: при преобразованиях координат они преобразуются по специальному тензорному закону, сохраняя свою прежнюю структуру. Нетензорные величины при преобразованиях координат обычно приобретают дополнительные (по отношение к тензорным) слагаемые.

Данный текст является ознакомительным фрагментом.