Вопросы после лекции

We use cookies. Read the Privacy and Cookie Policy

Вопросы после лекции

Вопрос: Вот было сказано о хиггсовском бозоне. Хиггсовское поле... Взаимосвязаны ли... Хиггсовский бозон — он... в чем именно интерес, чтобы...?

Я забыл, действительно, сказать. Значит, смотрите. Хиггсовский бозон — это колебание этого хиггсовского поля, это совсем новый тип частиц. Но его тоже можно проиллюстрировать — вот эта аналогия с водой. Помните, я рассказывал: пенопласт на столе и водичка. Когда вы дуете на эту воду, то не просто вы видите, что сами частички куда-то поплыли, но иногда, особенно если сильно подуете на воду, увидите волны на поверхности воды, которые разбегаются. Так вот, волны — это колебания той среды, которая сдерживает частицы. Понимаете? И их наличие — есть важное доказательство того, что действительно среда какая-то есть. Так вот, бозон Хиггса — это тоже колебание хиггсовского поля. Для того, чтобы его родить, надо столкнуть с большой скоростью, с большой энергией частицы. И вот поэтому его надо открыть. Если его не откроют, то, на самом деле, значит, теория эта вот неверна.

Вопрос: Какая оценка массы бозона Хиггса?

А вот это самая сложная вещь. Потому что, я говорю, разные модели совершенно разное предсказывают. Некоторые вообще ничего не предсказывают. Некоторые что-то предсказывают. Есть экспериментальные ограничения — ну, какие-то, не сильно важно. Проблема в том, что непонятно пока, какая у него масса.

Вопрос: Вы рассказали про хиггсовский механизм возникновения массы. Понятно, почему частицы становятся инертными, но непонятно, почему они должны притягиваться друг к другу, если у них так масса возникает? Ну, в смысле, гравитационно. Гравитация откуда тогда берется ?

Понятно. Значит, смотрите. Давайте так. Хиггсовский механизм с гравитацией непосредственно не связан. Гравитация, если уж совсем аккуратно говорить, происходит не между массами — это в ньютоновском случае она между массами происходит, а в теории относительности, в общей теории относительности, она происходит между объектами, обладающими энергией. Понимаете? Так вот, если у вас есть частица безмассовая, но куда-то она летит, то у нее тоже есть энергия. И, в принципе, она тоже притягивает. Просто когда у частицы есть масса, то ее можно остановить, и тогда из ее энергии останется только масса. Но это частный случай. На самом деле гравитация есть и между безмассовыми частицами. Хиггсовский механизм просто по-другому ее показывает, но гравитация есть и так.

Вопрос: Вы говорили, что нейтрон и протон, особенно протон, состоят из трех кварков, которые генерируют глюонное поле. А как рассчитали количество кварков в нейтроне и протоне и вообще — как можно проверить их существование экспериментально, как можно доказать?

Я сейчас повторю, я в принципе уже говорил, что если бы их не было, если бы всё было заполнено сплошняком, то при столкновении частиц всё разлеталось бы как-то более-менее изотропно. В разные стороны, но примерно одинаково. Эксперименты же показывают, что когда начинаешь сталкивать частицы при больших энергиях, в результате возникают струи, струи очень узконаправленные. Расчеты показывают, что они могут возникать только в той ситуации, когда у вас есть маленькие компактные объекты, которые разлетаются и порождают струи. Их количество тоже связано с экспериментальными данными — это технические вещи, то есть их тоже можно восстановить.

Вопрос: Вы говорили, что протоны отличаются только разным расположением кварков...

Не протоны, а вот есть много собратьев протонов — таких частиц, которые похожи на протоны. И они все в этом ряду отличаются друг от друга не количеством, а только расположением кварков.

...и в то же время вы сказали еще, что есть разные кварки. То есть все-таки от различности кварков тоже зависит?

Да, то есть есть просто кварки, скажем, тяжелые, которые сами по себе тяжелые. Они нестабильны, но они какое-то время живут. И из них тоже можно составить аналог протона. Эти частицы известны, они открыты, вот, это просто более тяжелые частицы — в них другие кварки сидят.

Вопрос: Я хотел бы спросить уже, скорее, не по самой лекции, а вопрос в целом. Какие еще возможны механизмы возникновения массы?

Понятно. Ну, давайте я парочку еще скажу. Во-первых, есть теория суперобъединения, в которой объединяются три известных взаимодействия — слабое, сильное и электромагнитное. Это всё происходит на еще меньших расстояниях, куда современные эксперименты вообще не достигают пока что. В современных теориях, которые пытаются это описывать, тоже есть аналог хиггсовского поля, только он более тяжелый. Так что, наверное, есть частицы, которые приобретают свою массу не за счет вот этого хиггсовского поля которое как бы «наше», которое будут изучать на LHC, а за счет более тяжелого. Ну, наверное, это тот же самый механизм, тем не менее есть такие частицы.

Совсем другой способ — это через теорию суперструн. Вот есть такая модная теория суперструн. Там колебания струн — это никакое не хиггсовское поле, никакая не концентрация энергии — это просто новый механизм порождения массы.

Вообще, я не знаю, как вы представляете себе массу. Может быть, вам это кажется чем-то особенным. На самом деле, если вы уравнение напишете, то это просто какое-то слагаемое дополнительное, которое тут возникает. Это слагаемое выглядит как масса. Мы его называем массой. То есть ничего особо удивительного в том, что масса появляется каким-то способом, нет.

Вопрос: Вы говорили, что при столкновении ядра разлетаются на несколько сот частиц. Они разлетятся на кварки — а еще на что?

Они по-разному разлетаются, в зависимости от энергии. Могут и на много. Но они не разлетятся на кварки. Ситуация там такая. Я уже говорил, что кварк просто так из протона не вытащишь. Если попытаться это сделать, у вас начнет «пухнуть» глюонное поле, и в какой-то момент оно рвется — просто энергетически выгодно так его разорвать. Когда оно рвется, то в месте разрыва рождается (если вы с терминологией немножко знакомы) получается кварк-антикварковая пара. Получается, что из протона пытались отодрать кварк — а отодрался не кварк, а пи-мезон (это частичка, состоящая из кварка и антикварка). Когда эти частицы рождаются реально в процессе, то выглядит это примерно так: сначала первые кварки сталкиваются, они пытаются разлетаться. Когда они отлетают на какое-то расстояние, это облачко рвется, возникает «кварк + антикварк» здесь и «кварк + антикварк» здесь, потом рвется в разных местах. И после того, как всё это порвалось и энергия уже успокоилась (потому что слишком сначала большая энергия была), потом разлетаются уже частицы: пи-мезоны, К-мезоны, разнообразные адроны и так далее.

Вопрос: Вследствие чего, если брать теорию хиггсовского поля, разные частицы обладают разной массой?

А это тоже непонятно. На этот вопрос не отвечается в рамках этой теории. К сожалению, есть вопросы, на которые эта теория не отвечает. Без этой теории у нас известно, что есть разные частицы с разной массой. В этой теории говорится то же самое, только другими словами: эти частицы по-разному цепляются за поле. Но почему они так цепляются, совершенно неизвестно. Физики надеются, что это начнет проясняться после того, как наконец-то откроют этот хиггсовский бозон, потому что там есть много вариантов, и начнут разбираться, собственно, что это за хиггсовское поле, какой конкретно механизм порождает его во всей Вселенной. Но это еще открытый вопрос.

Вопрос: Связано ли явление дуализма с глюоновым облаком?

Да нет, не связано. Дуализм — в смысле, корпускулярно-волновой дуализм — просто возникает в квантовой механике, без всяких дополнительных частиц, без всяких глюонов.

Вопрос: Струнная теория пытается объяснить не только как, а еще и почему. А вот теория хиггсовского поля объясняет ли, почему существует такое разнообразие частиц?

Нет, нет, конечно не объясняет. Этот вариант хиггсовской теории (ее официальное название — «электрослабая теория со спонтанным нарушением электрослабых сил») это не объясняет. На самом деле, это вовсе не альтернатива вот этой струнной теории. Это теории, которые работают «на разных этажах», скажем так. Суперструнная теория тоже пока ничего не говорит пока что про этот хиггсовский механизм.

Вопрос: А эти теории могут пересекаться?

Они не пересекаются, они могут следовать одна из другой. Суперструнная теория формулируется на очень больших энергиях. После того, как всё компактифицируется, получаются низкие энергии. Что получится при низких энергиях, теория суперструн пока не может ответить. Вот если она сможет вывести хиггсовское поле, тогда это будет большой успех, но пока она этого не может сделать.

Вопрос: Вы сказали, что что-то из хиггсовской теории уже подтвердилось. Что конкретно?

Из нее подтвердилось следующее. Есть частицы, которые переносят слабые взаимодействия: W- и Z-бозоны. У них есть масса, и эта масса тоже генерируется хиггсовским механизмом. Но в отличие от обычной материи — электронов и кварков — там никакой неопределенности нет, там все четко задано в теории. То есть теория просто четко может посчитать, например, отношение друг к другу масс этих частиц. Эта величина была посчитана и предсказана в 70-х годах. После этого начали экспериментально охотиться за этими W- и Z-бозонами. Их открыли и их массы совпадают с точностью 1-2% с предсказанием этой теории. Другие модели, которые дают такое же хорошее согласие, трудно придумать. Но, по-моему, они есть, то есть, в принципе, есть еще альтернативы. Это раз. Второе — частицы, которые еще не открыты, можно чувствовать, даже если вы их не видите. В квантовой механике есть такие виртуальные поправки — флуктуации тяжелых частиц, когда тяжелые частицы не рождаются, а на некоторое время в вакууме появляются, а потом снова исчезают (но это только слова, на самом деле, не надо визуально эту картинку себе представлять). Этот механизм влияет на свойства частиц и на реакции их рассеяния — ну, обычных частиц, протонов например. Эти поправки, корректирующие факторы, были посчитаны в рамках хиггсовской теории, и они вроде бы сходятся с экспериментом. То есть хиггсовский бозон еще не открыли, но его как бы уже косвенно чувствуют.

Вопрос: Я слышал про теорию — возможно, это теория суперструн — она утверждает, что наша Вселенная — это пульсирующая волна и что при сильном увеличении атомы тоже состоят из этих волн. Возможна ли вложенность Вселенной в вашем варианте?

Я не могу сказать, что это невозможно, но реально работающей такой теории я не знаю.

Вопрос: Бывают ли несчастные случаи в коллайдере? Наверное, там огромные радиации?

Бывают, да. Редко, но бывают. Обычно их стараются не допускать. Вот при конструировании LHC погиб один рабочий, погиб из-за нарушения техники безопасности. В какой-то шахте поднимали груз, который оказался не закреплен. Рабочий был внизу, и его просто прибило. Еще рассказывают (я не знаю, насколько можно этому верить), что какому-то человеку в голову пучок попал. У него получилась дырка насквозь, но он еще жил после этого.

Там, конечно, огромные энергии, и они действительно ничего не оставляют в том месте, куда попадают. То есть сплошняком этот канал они могут пробить легко. Но это не значит, что они разнесут всё в клочья, как это в фильмах показывают. В принципе, это возможно, но насколько это реально — я не знаю.

А просто мелкие травмы были, например, когда люди забывали отключить магнитное поле. Когда проходишь мимо, а в кармане, например, гаечный ключ, при таком напоре он просто вылетает из кармана и может поранить.

Вопрос: Что мешает частице «кварк + антикварк» просто аннигилировать?

Ничего не мешает, они реально аннигилируют. На самом деле, это смотря какую частицу брать. Вот пи-ноль-мезон — он состоит из кварка и того же самого антикварка. Они могут аннигилировать, и в результате у вас получается распад на фотоны. Пи-мезон действительно распадается на фотоны.

А как узнают, что он существовал?

Есть частицы, которые живут достаточно долго — например, микросекунды. За микросекунды при скорости света они могут пролететь достаточно много. Они оставляют следы в детектирующей аппаратуре: просто видно, что частица шла, а потом разделилась на две части. Это все реально смотрится. А пи-ноль-мезон живет очень коротко, и поэтому он никуда не успевает долетать. Такого рода частицы восстанавливают по инвариантной массе, то есть полной энергии продуктов распада. Если у вас есть частица — например, пи-ноль-мезон, — которая может распадаться на два фотона, то вы смотрите ее реакции в каком-нибудь столкновении. Не в одном, а во многих: просто тысячи однотипных столкновений. И строите распределение по полной энергии этих двух фотонов. Обычно картинка получается такая: при разных энергиях у вас получается мало фотонов, а при какой-то определенной энергии — очень много. Получается такой пик. Если мы верим в квантовую электродинамику, квантовую теорию, то это получается только потому, что образовалась частица, которая распалась. Вот так вот они и восстанавливаются.

Вопрос: Прозвучала мысль, что спокойные кварки и движущиеся кварки — это разные вещи. Поясните, пожалуйста, насколько они разные. Это реально разные вещи? Это тривиальные отличия — как покоящийся объект и сокращающийся движущийся объект — или нет?

Нет, это более сложные отличия.

Сохраняется ли при этом инвариантность релятивистской теории? Ведь всё должно согласовываться с теорией относительности.

Там всё согласуется. Сейчас я не рискну пояснять это на таком уровне. Это более сложная связь. Если хотите, об этом можно поговорить отдельно.

Вопрос: У меня несколько уточняющих вопросов.

1. LHC — это pp или анти-pp коллайдер?

Да, это pp, то есть протон-протон коллайдер. Это потому, что получать антипротоны в таком количестве очень сложно. Они ведь не существуют в природе, их надо получать. В коллайдере очень много частиц с большой концентрацией, их надо получать очень быстро.

2. Вы говорили о сверхпроводимости и о том, что этот эффект существует при больших объемах. Верно ли, что в наночастицах в вакууме при тех же условиях сверхпроводимости не будет?

Это непонятно. На самом деле, я говорил, что нет предела, ниже которого ее совсем нет, а выше — она полностью есть. Просто есть явление, которое постепенно включается при увеличении частиц.

3. Мы пытаемся оторвать в протоне кусок глюонного облака. Вы сказали, что когда кусок оторван, облако вырастает. Откуда протон знает, насколько его надо нарастить?

Не надо представлять глюоны так, как будто они просто сидят на своем месте и всё. На самом деле, каждый глюон — это не нечто такое маленькое, а сидит сразу во всем протоне. Они просто друг с другом интерферируют, как-нибудь по-хитрому. Если вы оторвете кусок глюонного облака, все частицы «почувствуют», что что-то случилось, и начнут размножаться так, чтобы всё заполнить.

До какого момента они будут это делать?

До такого, чтоб заполнить всё. Я здесь смогу привести аналогию более простую, с распределением Максвелла по скоростям. Если взять газ в спокойном состоянии при комнатной температуре и померить скорости, то это будет распределение Максвелла. А теперь давайте уберем высокоэнергетические частицы (в принципе, это можно сделать — не убрать их, но резко замедлить). В результате получается такой искаженный профиль. Что будут остальные частицы делать? Они будут так же двигаться? Нет: если подождать некоторое время, то это всё выровняется, и снова это станет распределение Максвелла, ну, может быть, немножко сдвинутое. При взаимодействии неправильные, неустойчивые состояния постепенно превращаются в устойчивые. Вот то же самое с глюонным облаком.

4. Если глюоны решили расплодиться и заполнить объем, их суммарная энергия увеличивается?

Нет, когда один глюон излучает другой, энергия делится между ними.

То есть увеличивается число при сохранении энергии?

Квантовые частицы — они такие: число их не фиксировано, а энергия — да.

Вопрос: Когда мы отрываем кусок глюонного облака, мы забираем также некоторую массу. После этого облако восстанавливается. Я же могу много раз его отрывать. Будет ли это когда-нибудь прекращаться?

Если вы действительно отрываете кусок, то вы воздействуете на этот протон. Вы же не можете просто взять и отцепить кусочек. Сам по себе протон не распадается на недопротон и еще кусочек глюонного поля, потому что они притягиваются. Если же вы хотите забрать из него кусок гоюонного облака, то вы должны его как-то потянуть. И в этот момент вы вкладываете дополнительную энергию в этот протон. Эта энергия целиком тратится на наращивание нового гоюонного облака. То есть надо просто аккуратно представлять, как это реально происходит.

Вопрос: Экспериментально обнаружены обратные процессы — из глюонных полей в кварки?

Да, глюонные поля могут сталкиваться, и рождаться «кварк + антикварковые» пары.

Вопрос: Может ли хиггсовское поле помочь в объяснении природы темной энергии?

Энергии? Ну, материи, понятно, может помочь, а вот насчет энергии? Это сложная вещь. Я, опять же, не могу сказать, что не может. Но с темной энергией всё еще более непонятно, чем с темной материей. Темная энергия должна учитывать хиггсовское поле. Если кто-то берется описывать темную энергию в какой-то модели, он обязан учитывать и плотность энергии хиггсовского поля. Пока ничего более конкретного не могу сказать.

Вопрос: Как различались в теории разные частицы, которые до хиггсовского поля не имели массы?

Они никак не различались. Дело в том, что тогда — «тогда» это значит как раз до нарушения этой симметрии — между этими частицами была полная симметрия. Они выглядели одинаково. Вот сейчас известны три лептона: электрон, мюон и тау-лептон. Они отличаются по массе. А тогда они все были безмассовые и выглядели абсолютно одинаково. А потом симметрия нарушилась, появились массы и так далее.

Вопрос: Если мы можем отрывать куски глюонного облака, мы можем той же энергии, но без кварков внутри?

Да, теоретически это возможно. Но экспериментально это пока не обнаружено, хотя ищут уже 40 лет. Это называется «глюбол».

Вопрос: Не могли бы вы написать список хороших книг по физике для начинающих?

Ну, по всей физике я не возьмусь, а вот по физике элементарных частиц и тому, что связано с LHC, возможно, напишу подборку.