Глава четвертая Опыты со светом

We use cookies. Read the Privacy and Cookie Policy

Глава четвертая Опыты со светом

Солнечные часы. Попробуйте проследить за своей тенью на открытом воздухе в различные часы дня и разные времена года. Тень не остается неподвижной, она как будто ползет вокруг нас. Утром она падает по направлению к западу, в полдень — к северу, вечером — к востоку, и, если бы лучи солнца не заслонялись земным шаром, в полночь тень падала бы к югу.

Если вы наблюдали за тенью в полдень в разные дни, вы замечали, как изменяется ее длина. Зимой тень длиннее всего, летом самая короткая, а дважды в год — в начале весны и осенью — длина ее одинаковая: меньше зимней и больше летней.

Длина и направления тени зависят от положения Земли по отношению к Солнцу. Вращаясь вокруг Солнца, Земля попеременно подставляет к нему больше то Северное, то Южное полушарие. Так как мы не ощущаем движения Земли, нам кажется, будто солнце описывает на небе дуги — зимой меньшие, а летом большие.

Всегда говорят, что солнце всходит на востоке и заходит на западе. Это не совсем верно. Все дуги, описываемые солнцем в различные времена года, имеют разную длину. Зимой солнце всходит в точке горизонта, лежащей между востоком и югом, к полудню оно невысоко поднимается над южной стороной горизонта и вечером заходит между югом и западом.

Самая короткая дуга солнца в нашем Северном полушарии 22 декабря. В эти сутки мы имеем самый короткий день и самую длинную ночь в году. С 22 декабря дуга, по которой движется солнце, расширяется и поднимается. Концы ее приближаются к востоку и к западу. Наконец, 21 марта солнце всходит точно на востоке и заходит точно на западе: 12 часов оно движется над горизонтом и 12 часов под ним. Следовательно, день равен ночи. Поэтому 21 марта называют временем весеннего равноденствия. В полдень солнце всегда оказывается точно на юге, совершив к этому моменту половину пути. Отсюда ясно, что 21 марта оно всходит ровно в 6 часов утра и заходит ровно в 6 часов вечера.

К лету дуги солнца все увеличиваются. Дневной путь солнца делается теперь продолжительнее ночного. Наступает, наконец, самый долгий день и самая короткая ночь — 21 июня. В это время солнце всходит в точке горизонта, лежащей между востоком и севером, а заходит между западом и севером. Понятно, что в это время на другой половине земного шара явления идут в обратном порядке.

Потом дни начинают укорачиваться, а ночи удлиняться. 23 сентября снова наступает равноденствие, называемое осенним.

После 23 сентября дни все продолжают укорачиваться, пока, наконец, не наступят самый короткий день и самая длинная ночь. Это происходит 22 декабря, после чего все изменения продолжительности дня и ночи повторяются в прежнем порядке.

Полуднем называется тот момент времени, когда солнце, находясь на юге, занимает самое высокое положение в небе.

Наши солнечные сутки — это время, протекающее между двумя соседними полднями. Продолжительность солнечных суток в течение года непрерывно изменяется, то увеличиваясь, то уменьшаясь. В наших измерениях времени мы пользуемся некоторой средней величиной солнечных суток за год, так называемыми средними солнечными сутками. Средние солнечные сутки разделили на 24 равные части и каждую часть назвали «часом».

Рис. 53

Механизмы, указывающие время суток, называются часами. Простейшие и самые верные часы, конечно, такие, показания которых зависят от положения на небесном своде освещающего их солнца. Недостаток таких часов в том, что ими можно пользоваться только днем, и то при ясном небе. Солнечные часы можно построить очень просто.

Возьмите большой химический стакан, немного картона и бумаги, вязальную спицу и толстую деревяшку. Это все, что нам нужно. Стакан должен быть 15 сантиметров высоты и 8 сантиметров в диаметре.

На рис. 53 вверху показан схематический чертеж солнечных часов, а внизу — общий вид их. Вы видите, что стакан установлен на деревянной подставке под определенным углом к горизонту. Размер подставки зависит от величины стакана, а углы ее треугольного сечения от того, в каком месте земного шара установлены часы. Верхний угол всегда равен 90°, а углы, прилежащие к основанию, изменяются в зависимости от широты места наблюдений.

Угол В должен быть равен широте места наблюдения; угол А равен 90° минус угол, равный этой широте. В астрономических календарях всегда имеются данные

о широте крупных городов. Если вы не находитесь в одном из таких центров, то воспользуйтесь географической картой, на которой имеется место вашего наблюдения, и по ней приблизительно установите его широту.

Для Москвы, например, угол В (широта) равен 55°45?, а второй угол А равен 90° — 55°45? = 34°15?. Выверить углы А, Б и В можно по транспортиру. Если вы повернете подставку более крутой стороной точно к югу, тогда верхняя плоскость ее будет параллельна полуденным лучам во время равноденствия.

Для того чтобы стакан держался на подставке, выпилите деревянный кружок по внутреннему диаметру стакана и проделайте в самом центре этого кружка маленькое отверстие для спицы. Края кружка оклейте материей и установите его в середине подставки. В центр кружка вклейте на сургуче или шеллаке спицу и на нее наденьте картонный или жестяной кружок. Жестяной кружок надо припаять, иначе он будет спадать. Когда будете укреплять кружок, следите за тем, чтобы он был расположен точно перпендикулярно к спице. На другой конец спицы наденьте обрезок пробки. Приклейте его ко дну стакана, когда окончательно будете собирать весь прибор. Так будет укреплен второй конец спицы. Тень от спицы будет ложиться на стенки стакана, и, чтобы узнавать время, нужно сделать циферблат.

Возьмите две полоски бумаги шириной 1,5 сантиметра каждая. Две полоски нужны потому, что зимой лучи солнца будут светить под кружок на спице, а летом сверху его; значит, тени будут падать то под ним, то над ним. Чтобы часы верно показывали время, надо очень аккуратно разграфить полоски и наклеить их на стакан в точно определенном месте.

Сначала вычертите на бумаге в натуральную величину схематический чертеж стакана со спицей и кружком, как сделано на рис. 53 вверху. Потом от края кружка отложите вверх и вниз углы 23,5°. На точки пересечения этих линий с противоположной стенкой стакана должны прийтись края бумажных полосок циферблата. Они должны быть наклеены на стенки стакана изнутри. Перенеся размеры с чертежа на стакан, можно точно наклеить на него бумажные полоски. Если всю эту работу вы сделаете аккуратно, ваши часы будут точно работать и в самый длинный и в самый короткий день.

Полоски для циферблата вырежьте лучше всего из прозрачной бумаги — кальки. Длина их должна быть точно равна половине внутренней окружности стакана. Эти полоски разделите на 12 равных частей и проставьте на них цифры: в середине 12, вправо 11, 10, 9, 8, 7, 6; влево 1, 2, 3, 4, 5, 6. Для упрощения работы можно вырезать сначала одну полоску бумаги шириной 3 сантиметра, а потом, уже после того как нанесены деления, разрезать ее вдоль пополам.

Чтобы верно наклеить полоски, надо сначала, еще до привинчивания кружка, на который надевается стакан, сделать на подставке маленькое углубление для конца спицы и через центр этого углубления провести линию аб, перпендикулярную к краям подставки. Потом, когда установите спицу на место, поставьте на расстоянии 2 метров от подставки зажженную свечу с той стороны, с которой показан юг. Свечу поставьте на что-нибудь так, чтобы свет от нее падал на верхнюю плоскость подставки. Поверните подставку, чтобы тень от спицы падала точно на среднюю линию. Теперь можно наклеивать полоски на стакан. Цифра 12 должна прийтись как раз на линии тени от спицы. Только не смачивайте слишком сильно бумагу клеем — она от этого вытягивается.

Готовые часы можно установить. Для них надо выбрать такое место, где подольше светит солнце. Можно поместить их и в комнате у окна, обращенного на юг, но только поставьте их на горизонтальную поверхность и не сдвигайте уже после установки.

В солнечный день по каким-нибудь верным часам, за несколько минут до полудня, поверните солнечные часы так, чтобы тень спицы подошла к делению 12 на полосках. Как только ваши верные часы покажут 12 часов дня, поверните солнечные часы так, чтобы тень от спицы легла точно на деление 12, и укрепите подставку часов окончательно. Теперь солнечные часы будут верно показывать время.

Вы уже знаете, что летом солнце будет освещать кружок на спице сверху, а зимой снизу, и два раза в год солнечные лучи будут падать параллельно плоскости кружка, так что от него на стенку стакана будут ложиться только узенькая полоска тени и вертикальная полоска от самой спицы. Это и будут дни равноденствия. В эти дни спица при восходе и заходе солнца будет бросать тень наделение 6. В другое время года тень от кружка будет все больше и больше приближаться к полоскам с делениями, и, когда она зайдет за края их, это будет самый длинный день летом и самый короткий зимой.

Тени, вертящиеся навстречу друг другу. Поставьте на стол две свечи и между ними и стеной протяните руку. Вы увидите две тени своей руки. Обе тени не будут так темны, как от одной свечи. Это потому, что на то место, куда падает тень от руки, падают лучи света от другой свечи. Две тени от руки будут одинаково темны только в том случае, если свечи стоят на равном расстоянии от стены и от руки и сила света у них одинакова. Это легко можно проверить, если отодвинуть какую-нибудь свечу подальше. Чем дальше источник света от стены, тем он должен быть сильнее, чтобы дать тень такой же густоты, как от более близкого источника света. Если вы наденете на спицу вырезанную из картона звезду и будете вращать ее между свечами и стеной, на стене будут вращаться две тени зубчатого колеса.

Рис. 54

Но пожалуй, немногие догадаются, как сделать, чтобы две тени одной и той же звезды вертелись в разные стороны.

Сделать это нетрудно: вращающуюся звезду нужно держать перпендикулярно к стене, а свечи должны быть одна с правой стороны звезды, а другая с левой, не очень далеко друг от друга (рис. 54).

Танцующие тени. Вы заметили уже, что тень от предмета делается меньше, если свечу отодвинуть дальше, и что, если свечу отодвинуть вправо, тень передвинется влево, всегда в сторону обратную движению света.

Зная это, можно устроить такую забаву.

Вырежьте из картона какие-нибудь фигуры и повесьте их на нитках перед экраном или просто перед белой стеной. Чтобы фигуры не вертелись, повесьте каждую на двух нитках. За фигурками поставьте несколько свечей. Получится много теней фигуры, столько, сколько вы зажжете свечей. Когда вы станете двигать свечи взад и вперед, вправо и влево, вверх и вниз, вы увидите забавную пляску фигур. Очень красиво получается, когда светлые фигуры танцуют на темном фоне.

Рис. 55

Откройте дверь в ту комнату, где будут сидеть зрители, и затяните дверь простыней. Сами останьтесь в другой комнате; за этим экраном поставьте стол и прибейте к одному концу его лист картона, на котором вырежьте две танцующие фигуры. За экраном, на столе, укрепите какой-нибудь деревянный брусок. Лучше всего вбить внизу в брусок гвоздь и заострить его конец, чтобы можно было его вколачивать в стол. К бруску привяжите на разной высоте несколько проволок — штук шесть или больше — и укрепите на них несколько свечей. Когда вы зажжете свечи, на экране появится много светлых фигур, а когда вы начнете вертеть свой подсвечник, фигуры станут двигаться то вправо, то влево, то приближаясь, то удаляясь (рис. 55). Получится полное впечатление танцев.

Эту картину можно разнообразить, зажигая свечи по очереди. На экране появятся, скажем, две фигурки. Дайте им потанцевать, затем зажгите другую свечу, третью и т. д.

Если кроме свечей на палке вы поставите по обе стороны несколько неподвижных свечей, по краям экрана появятся неподвижные группы фигурок, как бы зрителей наших фантастических танцев. Можно придвигать стол к экрану или удалять от него; от этого фигурки будут уменьшаться или увеличиваться. Если вместо свечей вы пристроите маленькие лампочки от карманного фонаря и провода от них подведете к нескольким выключателям, вам легко будет управлять ими и, при некоторой фантазии, устроить очень интересное представление.

Изображения, производимые маленьким отверстием. Вы, вероятно, наблюдали, как свет пробивается в щели занавесок или ставен или как по потолку или стенам ползут странные тени. Эти скользящие тени — изображения предметов, движущихся мимо дома.

Посмотрите на рис. 56. На нем показано, как получаются при помощи отверстий изображения на стенах или потолке. На этом рисунке видна перегородка с небольшим отверстием. Представьте себе, что вправо от нее находится темное пространство и стоит белый экран. От свечи, поставленной по левую сторону перегородки, на экране получится точное ее изображение, только перевернутое книзу.

Это явление объясняется очень просто. Лучи света распространяются всегда по прямым линиям, и свет исходит не только от самосветящихся предметов, как, например, от пламени свечи, но и от всех предметов, отражающих свет. Понятно, что свет от конца пламени, пройдя через отверстие, не может осветить весь экран. Он дает только пятнышко на экране. Также и от всех других частей пламени свечи на экране получаются различной яркости пятнышки. И из этих пятнышек получается изображение пламени, точно соответствующее настоящему. Так как от самой свечи отражаются лучи света пламени и тоже проходят сквозь отверстие перегородки, изображение самой свечи также получится на экране. По рисунку понятно, что изображение должно обязательно получиться перевернутым. Так появляется на экране изображение любого предмета — самосветящегося или освещенного. Изображение предмета будет тем яснее, чем лучше освещен предмет, и тем резче, чем меньше отверстие.

Рис. 56

Простейший фотографический аппарат. Изображение, получаемое с помощью маленького отверстия, невелико. При этом оно очень бледно. Чем отверстие больше, тем ярче изображение, но зато оно менее ясно. Значит, чтобы получить яркое изображение, выгоднее делать отверстие большим, но это сильно ухудшает качество изображения.

Для того чтобы получить яркое, четкое изображение, можно воспользоваться двояковыпуклым стеклом (линзой). С помощью этого стекла, вставляемого в большое отверстие, можно получить такое четкое и ясное изображение, что его можно обрисовать карандашом на белой бумаге.

Возьмите какое-нибудь двояковыпуклое, так называемое увеличительное, стекло и поставьте его на расстоянии 50 сантиметров от стены против окна. На стене, вероятно, получится круглое светлое пятно. Но когда вы станете приближать линзу, пятно это сделается ярче и меньше, потом очертание его станет резким, и почти тотчас же в нем появятся изображения предметов, конечно перевернутые. Изображения опять исчезнут, если вы приблизите линзу еще ближе к стене. В этом разница между щитком с отверстием и увеличительным стеклом.

Через маленькое отверстие изображение получается независимо от расстояния его от стены, а через увеличительное стекло — только на определенном расстоянии.

Вы можете заметить, что расстояние от линзы до стены должно быть разным для различных предметов. Для получения резкого изображения близкого предмета линза должна быть отодвинута дальше от стены, а для более далекого придвинута ближе к ней. Если вы будете постепенно приближать стекло к стене, на ней сначала появятся отчетливые изображения столов, стульев, потом эти изображения станут размытыми, зато станет более резким изображение окна и, наконец, отдаленного пейзажа.

Расстояние, на котором линза дает отчетливое изображение очень отдаленных предметов, называется «фокусным расстоянием» стекла. Оно зависит от выпуклости стекла, и поэтому для разных стекол фокусные расстояния различны. Сильно выпуклые линзы имеют короткие фокусные расстояния, а более плоские — длинные.

Изображение предметов с помощью линзы можно получать и без всяких приспособлений, но лучше сделать так называемую камеру-обскуру, для того чтобы на изображение, полученное с помощью стекла, не падал посторонний свет.

Устройство камеры-обскуры очень простое. Прежде всего измерьте фокусное расстояние линзы. Если оно равняется, скажем, 20 сантиметрам, возьмите картонную коробку такой же длины и в середине передней стенки вырежьте круглое отверстие диаметром немного большим, чем диаметр стекла. Стекло оберните картонной трубкой т длиной 3–4 сантиметра (рис. 57, А), а другую трубку в склейте так, чтобы в нее туго входила трубка со стеклом. Трубку в сделайте длиной 5 сантиметров. Эту трубку вклейте в отверстие коробки; чтобы она прочно держалась, можно обернуть ее у стенки коробки полоской картона и надеть на нее снаружи и изнутри коробки картонные кольца.

Рис. 57

У нас получился аппарат, которым можно даже фотографировать. Но нужно точно знать, в каком месте устанавливать фотографическую пластинку. Сделайте на заднюю открытую стенку аппарата крышку с четырехугольным вырезом по величине пластинки. Это отверстие затяните белой прозрачной бумагой. Когда вы будете передвигать трубку с линзой взад и вперед, на бумаге будут получаться изображения. Чтобы вам не мешал при наводке посторонний свет, накиньте на голову темный платок (рис. 57, Б).

Вы, конечно, не удивитесь, увидев, что изображение на бумаге получается перевернутым. Если вы внимательно рассмотрите его, увидите, что края изображения получились не резкими. Этот недостаток можно легко устранить. Вы знаете, что изображение становится тем резче, чем меньше отверстие для света. Если прикрыть края линзы и воспользоваться только ее серединой, изображение получается гораздо резче. Так же прикрывают края линз и в настоящих фотографических аппаратах. Кольцо, закрывающее более или менее широкие края линзы, называется диафрагмой.

Вырежьте из картона кружок такого же диаметра, как и увеличительное стекло, и посредине его прорежьте круглое отверстие диаметром примерно 1 сантиметр. Этот кружок (он обозначен буквой д на рис. 57, А) вставьте в трубку перед стеклом и приклейте. Теперь, передвигая трубку со стеклом, хорошенько наведите ее, чтобы получить резкое изображение снимаемого предмета. Заметьте мелом положение аппарата на подставке и унесите его в темную комнату. Там при свете красной лампы замените крышку из бумаги другой, в которой на том месте, где была бумага, вставлена фотографическая пластинка. Конечно, задняя стенка фотографической пластинки должна быть хорошо закрыта от света, иначе пластинка испортится. Проследите также за тем, чтобы свет не попал в коробку аппарата сквозь щели между стенками и крышкой.

Вам нужно еще иметь круглую крышку, чтобы закрывать трубку с линзой перед тем, как зарядить камеру фотопластинкой.

Чтобы хорошо сфотографировать предмет на воздухе, достаточно только на одно мгновение снять крышку с трубки (не качнув камеры), а потом снова надеть ее. В комнате крышку придется держать снятой 20–30 секунд. Продолжительность съемки зависит и от линзы, и от диафрагмы, и от пластинки, и от яркости освещения. Если вы напрактикуетесь, даже таким простым аппаратом можно делать неплохие снимки.

Зеркальная камера-обскура. Изображения, которые мы получали с помощью увеличительного стекла, были очень маленькими. Можно сделать так, что они будут больших размеров и их можно будет обводить карандашом для того, чтобы вместо фотографирования получать рисованные картины.

Из нескольких палочек сколотите пирамидку высотой 1 метр (рис. 58). Снизу она должна быть такой широкой, чтобы в нее можно было просунуть голову и руки, а сверху сделайте площадку для укрепления трубки со стеклом. В этой площадке, так же как и в нашем фотографическом аппарате, должна быть вклеена картонная трубка, внутри которой передвигается трубка с линзой. Но линза должна быть не такая, как для фотоаппарата. Она должна быть большего диаметра, чтобы изображения получались яркими. Фокусное расстояние ее должно быть приблизительно 1 метр.

Но если воспользоваться сейчас нашей камерой-обскурой, на бумаге появится только изображение неба. Нужно еще пристроить зеркало, чтобы лучи света от предметов отражались на линзу. На рисунке видно, как это сделать.

Рис. 58

Подберите небольшое, но хорошее зеркало, укрепите его в рамке, а рамку скрепите с деревянным брусочком обыкновенной небольшой шкатулочной петлей.

Петлю привинтите немного ниже конца бруска. К рамке напротив петли прибейте конец тонкой проволочки. Проденьте проволочку сквозь кольцо, забитое в верхний конец бруска, и пропустите свободный конец ее через верхнюю стенку пирамидки.

Теперь тот, кто сидит в камере, сможет этой проволочкой наклонять зеркало больше или меньше и получить на бумаге изображение горизонта или близкого пейзажа. Поворачивая стол или пирамидку, вы сможете получить изображение, которое хотите зарисовать.

Чтобы легче было найти нужное изображение, имейте в виду, что надо сесть спиной к действительному пейзажу. Для того чтобы изображение на бумаге получилось очень четким и ясным, нужно покрыть всю пирамидку плотной черной материей и самому влезть под этот чехол. Вы увидите на бумаге такое замечательно живое изображение, которое никакими другими способами получить нельзя. Не только одноцветное кино, но и цветное не может передать действительности так, как она получается на экране камеры-обскуры. Если вы немного умеете рисовать, с помощью камеры-обскуры вы сможете делать замечательные картины, особенно если будете раскрашивать их разноцветными красками.

Глаз — та же камера-обскура. Как бы ни был совершенен фотографический аппарат, как бы ни были тщательно сделаны его объектив и другие части, все это нельзя сравнить с замечательным по совершенству аппаратом — нашим глазом, напоминающим камеру-обскуру; камерой глаза управляет совершеннейшая система мускулов и нервов.

Глазное яблоко — почти круглое, величиной со средний грецкий орех (рис. 59). Эта прекрасная камера-обскура состоит из нескольких оболочек. Наружная, самая плотная волокнистая оболочка б называется белком. Белок — видимая часть глаза. Передняя часть этой оболочки закрывает более выпуклую часть яблока. Она совершенно прозрачна и тверже всей остальной части оболочки. Это — роговая оболочка бр.

Вплотную к белку прилегает изнутри сосудистая оболочка с. Та часть ее, которая находится под роговой, — ср, называется радужной. В середине ее есть отверстие д — зрачок. Это диафрагма нашего зрительного аппарата; она обладает замечательным свойством автоматически сжиматься, когда сквозь нее проходит яркий свет, и расширяться при слабом свете. Вы это легко можете заметить, придвигая и отодвигая от глаза товарища зажженную свечу. В сумерки зрачки так широко раскрыты, как будто хотят поглотить все слабые лучи догорающего дня.

Цвет радужной оболочки бывает различным. Она бывает очень темной, почти черной, голубоватой, серой и всяких других оттенков.

Рис. 59

За диафрагмой помещается объектив глаза. Это чечевицеобразное, совершенно прозрачное тело — хрусталик х. Сквозь него проходят, преломляясь как в увеличительном стекле, лучи света и собираются на третьей и последней — сетчатой оболочке глаза со. К этой оболочке прикреплены отростки зрительного нерва я, проходящего через все три оболочки глаза прямо в мозг человека. На этой сетчатой оболочке, как на пластинке фотоаппарата, и получаются изображения внешних предметов.

Кроме хрусталика, помещающегося в особой сумке и плавающего в прозрачной жидкости, весь глаз заполнен студенистым стекловидным веществом. Все части глаза, пропускающие световые лучи, — роговая и сетчатая оболочки, хрусталик с сумкой и жидкостью и стекловидное тело, — поразительно прозрачны.

Глаз обладает всеми свойствами очень хорошего оптического инструмента. Фокусное расстояние хрусталика может изменяться само собой. Когда вы переводите глаза с близкого предмета на отдаленный, вы непроизвольно изменяете фокусное расстояние хрусталиков своих глазных аппаратов. Достигается это при помощи особых мускулов, которые могут изменять форму хрусталика, делая его более выпуклым или плоским.

Последняя часть нашего фотографического аппарата — веки. Они заменяют крышку объектива и предохраняют глаз от повреждений. Впрочем, кроме век, наружная сторона глазного яблока защищена еще кожицей, составляющей как бы продолжение кожи, которой покрыто все наше тело. Только на глазах она так тонка и прозрачна, что ее совсем не видно.

Видим мы таким образом. Снопы лучей света, исходя из различных частей предмета, проникают сквозь зрачок в глаза. Там лучи света преломляются, собираются в отдельные точки на сетчатой оболочке и составляют на ней изображение того предмета, на который направлен взор. Сетчатая оболочка глаза не запечатлевает изображения окончательно, как пластинка в фотоаппарате, а немедленно передает все свои световые раздражения мозгу и ежесекундно готова принимать все новые и новые.

В зависимости от того, как пользуются зрением различные животные, населяющие землю, глаза их устроены по-разному. Птицы, например, должны видеть с высоты очень далеко, поэтому глаза их велики и светосильны.

Хрусталик глаза птицы не такой выпуклый, как наш, и глазное яблоко у нее более плоское, чем у человека.

Иначе устроены глаза животных, пользующихся зрением в воде, например рыб. Опустите обыкновенное увеличительное стекло в воду, и вы увидите, что фокусное расстояние его в воде увеличивается. Получаемое с помощью стекла изображение в воде отодвигается дальше, чем в воздухе.

Значит, для того чтобы иметь стекло с тем же фокусным расстоянием в воде, надо увеличить выпуклость стекла. Действительно, глаза у рыб имеют хрусталик почти совсем шаровидный.

Искусственный глаз. Вы можете сделать себе маленькую модель глаза и на ней посмотреть, как действует наш глаз.

Раздобудьте маленькую лупу диаметром 2 сантиметра, с фокусным расстоянием 3–4 сантиметра. Потом возьмите резиновый мяч, диаметром немного больше, чем фокусное расстояние лупы. Мяч будет глазным яблоком (рис. 60). На двух диаметрально противоположных сторонах мячика нарисуйте два кружка, один побольше лупы, другой поменьше, и вырежьте их. К меньшему отверстию приклейте лупу, чтобы она лучше держалась, оклейте ее сверху холщовым кольцом. Холст можно раскрасить под цвет радужной оболочки глаза.

Рис. 60

Второе отверстие затяните тонкой прозрачной бумагой. Можно просто заклеить его обыкновенной белой папиросной бумагой, а потом промазать ее маслом. Чтобы при вырезании мячик не очень мялся, выберите такой, у которого стенки потолще.

Вот и весь аппарат. Поверните его стеклом к окну или какому-нибудь светящемуся предмету, и вы увидите на бумаге изображение. Если наклеенная бумага пришлась как раз в самом фокусе объектива, изображение будет отчетливым и ясным. Если изображение не получается ясным, можно сжать мячик с боков и спереди; тогда увеличится или уменьшится расстояние от объектива до бумаги, и таким образом можно будет найти положение, при котором изображение станет отчетливым. Наш глаз тоже приспособляется к рассмотрению различно удаленных предметов. В глазу хрусталик — его объектив — изменяет кривизну своих поверхностей.

Попробуйте закрыть на некоторое время глаза, а потом, открыв их, посмотреть на далекие предметы. Вы увидите их совершенно ясно. Затем попробуйте быстро перевести глаза на близкий предмет, и, прежде чем вы увидите его со всей ясностью, вам придется что-то сделать со своими глазами — присмотреться. На это уйдет некоторое время.

Что же в это время происходит с глазом? Сначала на сетчатой оболочке получается неясное изображение, и мозг сейчас же приказывает нервам привести хрусталик в такое состояние, чтобы его кривизна дала совершенно отчетливый «снимок» на сетчатой оболочке. Это делается непроизвольно в продолжение очень небольшой доли секунды. Способность глаза применяться к расстоянию до предмета носит название аккомодации глаза. То или иное отношение выпуклости хрусталика к величине глазного яблока делает глаз то близоруким, то дальнозорким. Это нетрудно проследить и на опыте с искусственным глазом.

Сожмите мячик поперек между стеклом и бумагой. От этого он удлинится, и на бумаге получится изображение только близких предметов. Наш искусственный глаз станет «близоруким». Приставьте теперь к нему очки для близоруких с двояковогнутыми стеклами — и на бумаге снова появится ясное изображение отдаленных предметов (рис. 60).

Если же сжать глаз от стекла к бумаге, пропадет изображение близких предметов, и аппарат наш будет работать как «дальнозоркий». Чтобы заставить теперь искусственный глаз видеть так же хорошо близкие предметы, перед ним надо поставить очки с двояковыпуклыми стеклами (очки для дальнозорких).

Зеркало. Мы уже так привыкли к зеркалу, что не обращаем внимания на некоторые его замечательные свойства. Ведь простой, гладкий кусочек стекла, подклеенный чем-нибудь блестящим, становится просто чудесным.

Вы подходите к этому стеклу, а навстречу вам идет ваше собственное изображение со всеми мельчайшими подробностями, которые ни один художник не в состоянии изобразить с такой точностью.

Изображение в зеркале возникает по закону отражения лучей света, такому же простому, как «отражение» мячика от стены. Вы уже читали, что мяч, брошенный прямо в стену, отскочит назад в руки, а если бросить его под углом, он отскочит под тем же углом, но в противоположную сторону.

Помните, закон этот физиками формулируется так: угол падения равен углу отражения.

Закон этот верен при всякой величине угла, даже при бесконечно малой, а при перпендикулярном ударе в стену можно сказать, что оба угла — и падения и отражения — равны нулю. Мы знаем, что этому закону подчинены и звуковые лучи.

То же самое можно сказать и про лучи световые. На рис. 61 показано зеркало, в котором отражается свеча. Лучи света от свечи расходятся по всем направлениям. Сноп лучей падает и на зеркало и отражается им. Некоторые лучи света свечи, начерченные на рис. 61, помечены номерами 1, 2, 3, 4. Первый луч падает на зеркало перпендикулярно и отражается обратно. Его можно видеть только сквозь огонь. Все остальные лучи падают на зеркало под различными углами и под теми же углами отражаются.

Рис. 61

Возьмите, например, третий луч и в той точке зеркала, на которую он упал, восставьте к зеркалу перпендикуляр. По другую сторону перпендикуляра отложите такой же угол, какой образовал к нему луч. Это будет луч отраженный. Продолжите его за зеркало, и он пересечется с продолжением первого луча. Сколько бы мы ни проводили лучей из одной светящейся точки, все продолжения их отражений пересекутся за зеркалом также в одной и той же точке. В этой именно точке мы и будем видеть в зеркале выбранную нами точку свечи.

Собрание изображений всех точек свечи дает нам изображение всей свечи. Мы можем изменять место свечи, и всегда ее изображение за зеркалом будет казаться нам на таком же расстоянии, на каком действительная свеча находится перед ним.

Бесконечные зеркальные отражения. Чтобы комната казалась больше, в ней иногда ставят зеркало во всю стену. Вся комната отражается в нем и таким образом как бы удваивается. Конечно, для полной иллюзии нужно, чтобы зеркало это было очень хорошим и совершенно чистым, чтобы оно ничем не выдавало себя. Если и противоположную сторону комнаты сделать зеркальной, комната покажется бесконечной. Отражение одного зеркала повторится в другом, затем опять в первом, и так — пока лучи совершенно не ослабеют и не сольются где-то в бесконечной дали.

Это можно проделать и в маленьком масштабе. Подберите два одинаковых зеркала, но не очень маленьких, и поставьте их на стол одно против другого, а между ними установите две свечи. Вы увидите бесчисленную вереницу свечей, уходящих вдаль.

Калейдоскоп. Вы видели уже, что два зеркала, поставленные друг против друга, отражают стоящие между ними предметы бесконечное число раз. Очень интересно рассмотреть, что получается, если зеркала составлены под углом.

В них отражения располагаются не по одной линии, а по многоугольнику. Вы это легко заметите, если начнете наклонять одно зеркало к другому. Чем больше вы наклоните зеркало, тем рельефнее будут отражения и тем большее число углов в многоугольнике вы увидите. Если углы наклона зеркал будут 18, 36, 45, 60 градусов, вы увидите 20, 10, 8, 6 изображений, считая в том числе и самый предмет.

На этом свойстве зеркала основано устройство очень интересной игрушки — калейдоскопа. Сделать его легко.

Склейте картонную трубку длиной 25 сантиметров и внутренним диаметром 8 сантиметров. Чтобы трубка получилась аккуратной, склейте ее на подходящем круглом цилиндре и при склейке намочите слегка картон.

Когда трубка высохнет, она получится очень твердой. Потом возьмите три полоски тонкого стекла такой же длины, как и трубка, а шириной 7/8 ее диаметра (для нашего калейдоскопа — 7 сантиметров). Все стекла с одной стороны промажьте черным лаком и, когда он высохнет, вставьте в трубку так, чтобы два стекла были повернуты внутрь стеклом, а третье — черной стороной. Эта черная стенка вставляется для того, чтобы не слишком путать картину бесчисленными отражениями.

Лучше самому сделать стекла с черными поверхностями, чем брать обычные посеребренные, потому что они толстые и всегда дают изображение с двойными контурами. Чтобы стекла не болтались, заложите между ними и стенками скомканную бумагу.

Один конец трубки заклейте кружком с маленьким отверстием для глаза посредине. Затем подыщите круглую коробочку диаметром немного большим, чем диаметр трубки. В крышке и в дне этой коробочки вырежьте круглые отверстия во всю величину их. Оставьте только узенькие края.

Дно коробочки заклейте самой прозрачной, но крепкой бумагой, а крышку заклейте стеклянным кружком. Коробочка получится с прозрачной стеклянной крышкой и с пропускающим свет дном. Подклейте ее крышку под трубку калейдоскопа. Теперь насыпьте в коробочку разной пестрой мелочи — пестрых бус, фигурок и звезд из цветной бумаги, колечек — и направьте трубку на свет. Посмотрите в маленькое отверстие и попробуйте вращать трубку вокруг оси. Вы увидите бесконечное разнообразие фигур, когда вся насыпанная в коробку мелочь, перекатываясь, будет отражаться в зеркалах. Когда фигурки попадут в угол между зеркалами, будут появляться различные звезды; когда они очутятся в углу против черного стекла, вы увидите венки. Все фигуры будут симметрично построены.

Как можно смотреть сквозь камень. Конечно, это фокус, потому что сквозь непрозрачное тело, как ни смотри, все равно ничего не увидишь. Тут секрет в зеркалах. Прибор для смотрения сквозь непрозрачные предметы сделать нетрудно. Размеры его можете взять какие захотите.

Склейте, например, П-образную картонную коробку длиной 25 сантиметров и высотой 20 сантиметров (рис. 62).

Поперечник коробки можно взять равным 7 сантиметрам. С наружных сторон коротких частей коробки приклейте две трубки Ап Б, ас внутренней, точно против этих трубок, — короткие трубочки а и б. Лучше всего врежьте трубки в стенки коробки, чтобы казалось, что трубки А и a одно целое и также одно целое трубки Б и б. Теперь в коробке надо поместить 4 зеркала З1, 32, З3 и 34. Это самая трудная часть работы.

Зеркала нужно вклеить очень точно, под углом 45° к стенкам коробки. Два верхних зеркала нужно вклеить зеркальной стороной вниз, а нижние — зеркальной стороной кверху. Тогда свет, попавший в трубку, например от свечи, отразится зеркалом 31 под углом 45° и упадет на зеркало 32. От этого зеркала под тем же углом 45° он отразится на зеркало З3, потом на зеркало 34 и, наконец, попадет в наш глаз (рис. 62). Фокус, как видите, простой, и отражение получается таким ясным, что кажется, будто действительно видишь свечу.

Рис. 62

Поставьте между трубками а и б камень, и, кто бы ни посмотрел в трубку А, увидит сквозь камень свечу. Если спрятать нижнюю часть коробки так, чтобы никто не мог подумать, что здесь сделано какое-нибудь приспособление, вряд ли кто догадается, как получается такой замечательный эффект.

Вы, вероятно, не раз замечали, проходя мимо окон магазина, что в них не только хорошо видно все находящееся за окном, но в стеклах, как в зеркале, отражаются прохожие и вся улица. Иногда предметы с улицы так хорошо отражены в оконном стекле, что кажется, будто они стоят в магазине.

Таким свойством обыкновенных стекол можно воспользоваться, чтобы устроить интересный оптический обман. На рис. 63 вы видите стол и поставленный перед ним стул. Между спинкой стула и столом остается промежуток примерно 3/4 метра. Стул покрывается чем-нибудь черным так, чтобы тот, кто будет стоять за стулом, не видел ничего под столом.

На стол поставьте, например, низкую цветочную вазу, а со стороны стула, на краю стола, установите на шнурках большое стекло в наклонном положении. На стул положите букет цветов и осветите букет из-под стола. Цветы отразятся в стекле, а сквозь стекло будет видна и ваза. Наблюдателю покажется, что в вазе появились цветы. Только когда будете показывать кому-нибудь этот опыт, сначала точно установите цветы, стекло и вазу так, чтобы отражение букета получалось на нужном месте.

Рис. 63

Если вы закроете чем-нибудь свечу, цветы из вазы исчезнут. Замените вазу банкой с водой или настоящим аквариумом, но без рыб, а рыбок из золотой бумаги положите на сиденье стула, — и все зрители увидят рыб в аквариуме. Если вы будете удалять свет, рыбки будут исчезать, а когда приблизите свет, — они снова появятся.

Еще не так давно в театрах показывали пьесы с привидениями. Для этого, конечно, были нужны громадные стекла. Изображали, например, борьбу привидения с трусливым или неустрашимым рыцарем. Края стекла при этом заделывали в стены, и тот, кто изображал рыцаря, помещался позади стекла на сцене. Перед стеклом в полу находился большой люк. В этом люке на черном фоне помещался тот, кто изображал привидение. Когда это привидение освещали сильным электрическим светом, зрители видели его прозрачную фигуру на сцене. Меч рыцаря, как казалось зрителю, проникал в тело привидения, но не поражал его. Привидение не знало никаких препятствий: ни столы, ни стулья, ни стены не могли преградить ему дорогу. Если нужно было, чтобы привидение исчезло, достаточно было только нажать кнопку и погасить свет.

В шекспировской драме «Ричард III» таким образом на сцене появлялись духи перед смертью Ричарда.

Вогнутые зеркала. В зеркалах с вогнутой шаровой поверхностью изображения сильно отличаются от получаемых в обычных плоских зеркалах. В опытах со звуками мы пользовались уже вогнутыми зеркалами. Там зеркало отражало звуковые лучи. Поэтому его не обязательно было делать блестящим. Для опытов со светом поверхность зеркала обязательно должна быть полированной — гладкой. Дуги на рис. 64 изображают разрезы вогнутых зеркал. Естественно, что от каждого предмета лучи будут отражаться на внутренних сторонах этих зеркал. Точки К, которые служили нам центрами для построения зеркал, называются центрами кривизны и имеют очень важное значение. Если в эту точку поместить, например, свечу, все лучи от нее будут падать на поверхность зеркала перпендикулярно и отразятся в тех же направлениях (рис. 64, А).

Посмотрим теперь, что произойдет, если мы будем приближать свечу к зеркалу по центральной линии, которая называется оптической осью зеркала. Лучи света будут падать уже не перпендикулярно к поверхности зеркала, кроме одного, центрального луча. Их путь вам легко определить. На рис. 64, Б из точки а, лежащей на оптической оси, проведены три луча. Для того чтобы узнать, куда отразятся эти лучи, достаточно провести радиусы через точки падения лучей на зеркало, так как радиус является перпендикуляром к зеркалу в той точке, куда он проведен. Тогда, отложив по другую сторону радиуса такие же углы, вы увидите, что все отраженные лучи сойдутся в одной точке б, лежащей тоже на оптической оси зеркала, но по другую сторону от центра кривизны.

Рис. 64

В плоском зеркале изображение получается всегда за зеркалом, а в вогнутом может оказаться и перед ним. В этом случае оно может быть уловлено на экране. Если вы поставите перед вогнутым зеркалом в том месте, которое отмечено буквой б, лист бумаги, то на нем получится отчетливое изображение свечи, перевернутой пламенем вниз.

Припомните, что каждая точка освещенного тела является источником света. Проследите по рис. 64, В направление падающих и отраженных лучей от острия до пера стрелки. Так как вы знаете закон отражения, то, построив углы падения и проведя линии отражений, вы увидите, что лучи, исходящие от острия стрелки, после отражения пересекутся под оптической осью, а лучи света, исходящие от пера стрелки, после отражения пересекутся над осью. Таким образом, изображение стрелки получается перевернутым.

Рассматривая этот чертеж, вы поймете, что чем ближе придвигать источник света к зеркалу, тем дальше от него будет помещаться отражение, делаясь все больше по размерам. Придвигая предмет, вы дойдете наконец до такого предела (точка в на рис. 64, Г), который составляет существенную особенность вогнутого зеркала. Все лучи, исходящие из этой точки, уже не пересекаются, а идут параллельно друг другу и главной оси зеркала. Физики говорят, что точка пересечения этих лучей лежит в бесконечности. Так, пока источник света прошел короткий путь от центра кривизны Ж до замечательной точки в, изображение его должно было совершить громадное путешествие. Сперва оно уходило медленно, потом все быстрее и быстрее и наконец ушло в бесконечность.

Если источник света мы поместим на огромном расстоянии от зеркала, тогда его лучи, поступая в зеркало, параллельно отразятся все почти в ту же точку в, находящуюся на половине расстояния между центром кривизны Км центром самого зеркала. Эта замечательная точка в называется главным фокусом зеркала.

У нас есть источник почти идеально параллельных лучей света. Это солнце, так как оно находится от нас на громадном расстоянии. Когда зеркало направлено на солнце, изображение его получается в уменьшенном виде в точке в. Если навести изображение солнца на бумагу, она тотчас же загорится. Это объясняется тем, что вместе с лучами света от зеркала отражаются и тепловые лучи, идущие от солнца.

На этих свойствах вогнутых зеркал основано устройство так называемых гелиостанций, использующих тепло солнца. В месте в ставят паровой котел, на котором собираются тепловые лучи. После достаточного действия их котел настолько нагревается, что вода в нем закипает. Температура в точке в может быть так велика, что самые тугоплавкие металлы, помещенные в ней, будут плавиться.

Интересно посмотреть, что получится, если источник света приближать к зеркалу от главного фокуса в. Посмотрите на чертеж Д рис. 64. Лучи света падают на зеркало под таким большим углом, что после отражения не идут даже параллельно, а расходятся в пространстве. Точка пересечения их, а значит, и изображение получится на продолжении отраженных лучей за зеркалом. То же происходит в опытах и с плоским зеркалом, но изображение в обычном зеркале получалось в натуральную величину, а изображение в вогнутом зеркале будет увеличенным.

Какой замечательный прибор вогнутое зеркало! Пока источник света или какой-нибудь предмет перемещается на незначительное расстояние от центра кривизны к зеркалу, изображение его совершает гигантский путь. Когда источник света находился к зеркалу немного ближе центра кривизны, изображение его получалось увеличенным и перевернутым. По мере приближения предмета к зеркалу оно, все так же перевернутое, убегало от него и становилось все больше и больше, пока не ушло в пространство. Это было, когда источник света находился в главном фокусе. При дальнейшем приближении источника света к зеркалу изображение, которое мы только что получили в беспредельном пространстве и перед зеркалом, появилось сразу далеко за ним. При этом оно успело перевернуться и стать прямым. Затем с невероятной быстротой оно приближается, уменьшаясь, чтобы наконец столкнуться с источником света в тот момент, когда он прикоснется к зеркалу.

Цветы в воздухе. Изображение, которое дает вогнутое зеркало, можно даже не воспроизводить на бумаге. Оно видно в воздухе настолько ясно и с такими мельчайшими подробностями, что хочется протянуть руку и взять его. И только потому, что в это же время вы видите перед зеркалом тот же предмет, вы сознаете, что это изображение, а не оригинал.

Но если только немного приподнять зеркало, изображение получится не прямо за предметом, а немного выше его. Если заслонить чем-нибудь предмет от глаз зрителей, можно увидеть только одно изображение. На рис. 65 показано, как можно, пользуясь вогнутым зеркалом, ввести глаза в заблуждение.

Рис. 65

Поставьте на подставку пустую вазу, а на передней стороне подставки на черном матовом фоне приколите цветы, перевернутые стеблями вверх. Матовый фон, например черный бархат, нужен для того, чтобы не получилось изображение ящика. Букет поместите ниже оптической оси, и изображение его получится выше ее. Изображение букета будет так реально, что невольно несколько раз отойдешь в сторону, чтобы убедиться, что ваза действительно пуста.

Можно спрятать перевернутую статуэтку за подставку и показывать ее стоящей на каком-нибудь пьедестале. С вогнутым зеркалом можно проделать множество интересных опытов.

Шаровидное зеркало. Выпуклое зеркало не так интересно, как вогнутое. Если начертить отражение лучей в выпуклом зеркале, то вы увидите, что отраженные им лучи всегда расходятся, где бы ни находился источник света. Значит, это зеркало совсем не дает действительных изображений, лежащих перед ним в воздухе. Изображение всегда находится за зеркалом и всегда получается в уменьшенном виде. Такие шаровидные зеркала иногда ставят как украшение в садах, парках и т. п. В них замечательно отражаются в миниатюре окрестности, и получается очень живой пейзаж.

Данный текст является ознакомительным фрагментом.