10.8. Задачи увода реального угрожающего объекта

We use cookies. Read the Privacy and Cookie Policy

10.8. Задачи увода реального угрожающего объекта

Недавнее обнаружение астероида Апофис показывает, что близкий пролет астероида, хотя и не задевающего Землю, оказывается весьма опасным ввиду возможных резонансных возвратов, рассмотренных в главе 7. Как было показано выше в этой главе, противодействовать ситуации резонансного возврата существенно легче, чем осуществлять перехват. Хотя резонансные возвраты уже рассматривались в главе 7, тем не менее полезно вернуться к этому вопросу и привести некоторые дополнительные сведения.

На рис. 10.11 приведена схема прогнозируемого близкого пролета астероида Апофис мимо Земли в 2029 г. и показано изменение вектора скорости астероида при гравитационном взаимодействии астероида с планетой.

Изменение скорости астероида по направлению и величине означает появление его новой гелиоцентрической орбиты в результате сближения с Землей. Вследствие неизбежных ошибок определения орбиты и ее последующего прогноза астероид может иметь различные значения прицельного расстояния. На рис. 10.11 возможные отклонения от номинального значения прицельного расстояния показаны жирной прямой, перпендикулярной относительной скорости астероида (так называемая линия вариации прицельного расстояния). Длина отрезка этой прямой составляет несколько тысяч километров. Виртуальные (возможные) астероиды, прошедшие через различные точки прямой, обогнут Землю на разных расстояниях. В зависимости от величины этого расстояния Земля по-разному изменит гелиоцентрическую орбиту астероида. Внутри возможного разброса входных траекторий находится зона резонансного возврата (ЗРВ) (то же самое, что и «замочная скважина» в главе 7), размеры которой (? 600 м) показаны на врезке слева. Если Апофис пройдет через нее 13 апреля 2029 г., то через 7 лет (в 2036 г.) астероид столкнется с Землей.

Точное место удара по Земле в 2036 г. зависит от того, через какую именно точку зоны резонансного возврата пройдет Апофис в 2029 г. Все возможные точки столкновения расположены в полосе, имеющей ширину ? 60 км. По сути дела, трасса возможного удара является как бы проекцией зоны резонансного возврата на Землю, и ее вид показан на рис. 10.12 (см. вклейку) [Schweickart, 2006].

Рис. 10.11. Изменение орбиты астероида Апофис при сближении с Землей

По имеющимся оценкам, энергетический эквивалент падения Апофиса составляет? 800 Мт ТНТ [Chesley, 2006]. Выделение такой энергии вызовет региональную катастрофу на суше или катастрофическое цунами в океане. Характер трассы возможного удара, показанный на карте мира, ясно демонстрирует межгосударственный масштаб бедствия. В случае, если пролет астероида в 2029 г. произойдет недалеко от ЗРВ, то в 2036 г. он испытает новое опасное сближение с Землей.

Таким образом, выявленная возможность столкновения с Апофисом в 2036 г. (и это — после, казалось бы, благополучного пролета астероида мимо Земли) ставит перед человечеством две серьезные задачи. Первая из них — это заблаговременное прогнозирование траектории Апофиса с такой точностью, которая гарантирует получение ясного ответа на вопрос: возможно ли (и насколько вероятно) прохождение Апофиса в 2029 г. через ЗРВ? Вторая задача возникает в случае высокой вероятности такого развития событий. Она сводится к проведению такой коррекции орбиты, которая исключит удар по Земле в 2036 г. Поскольку протяженность ЗРВ составляет менее километра, то в идеальном случае достаточно скорректировать траекторию Апофиса так, чтобы прицельное расстояние изменилось всего лишь на несколько километров, и это устранит опасность.

Однако ясно, что на практике как определение орбиты, так и выполнение коррекции неизбежно будут выполняться с некоторыми и, возможно, не такими малыми ошибками. Поэтому возникает необходимость определения максимально допустимых ошибок требуемой коррекции. Анализ обстоятельств различных возможных сближений Апофиса с Землей в 2029 г. показал, что ЗРВ, представленная на рис. 10.11, оказывается в околоземном пространстве не единственной, и на самом деле таких зон в окрестности Земли имеется довольно много [Chesley, 2006].

На рис. 10.13 показаны результаты расчетов расположения ЗРВ на прямой, вдоль которой откладываются значения прицельного расстояния (линия вариации прицельного расстояния (рис. 10.11)). Часть ЗРВ располагается за пределами области рассеивания прицельных расстояний, изображенной на рис. 10.11. Каждая зона отвечает возможным возвращениям Апофиса к Земле в том или ином году, а масштабом на этих линиях выбран радиус Земли Rз, равный Rз = 6378 км. Поэтому коррекция орбиты Апофиса, исключающая его возвращение в 2036 г., должна учитывать общую картину расположения зон резонансных возвратов во избежание попадания в ту или иную ЗРВ.

На рис. 10.13 видно постепенное сокращение размеров ЗРВ по мере поступления новых наблюдений Апофиса. Сплошной линией показан интервал, равный ±?, а пунктир отмечает рассеивание в пределах ±3?. Можно видеть, что на исходной стадии уточнения орбиты (февраль 2005 г.) ошибка прицельного расстояния могла достигать ? 3,6Rз. В этих пределах находились ЗРВ, соответствующие столкновениям с Землей от 2034 г. до 2048 г. По мере уточнения орбиты, закончившегося к августу 2005 г., область рассеивания сокращалась, и к концу интервала она охватывала лишь одну ЗРВ 2036 г. Среднеквадратичная ошибка величины прицельного расстояния составила ? ? 725 км. Следует отметить, что в настоящее время эта ошибка имеет величину ? 350 км (см. главу 7).

Рис. 10.13. Зоны резонансного возврата и динамика уточнения расположения зоны резонансного возврата в 2036 г. для случая астероида Апофис. Отрезки сплошной линии имеют длину, равную разбросу ?, пунктирной линии — 3?

Расчетное расположение зон резонансного возврата, показанное на рис. 10.13, дает указания на величину максимально допустимых ошибок определения траектории при пролете Апофиса мимо Земли в 2029 г. и исполнения коррекции, обеспечивающей гарантированное отсутствие опасных сближений. При этом придется обеспечить среднеквадратичное значение ошибок определения траектории и коррекции не хуже, чем 300 км, исходя из условий гарантии отсутствия удара по Земле в 2036–2037 гг.

Указанные точности прогноза и коррекции следует считать минимально необходимыми. Однако они потребуют проведения большой коррекции орбиты, которую желательно всемерно уменьшать. Сокращение ошибок определения траектории позволит уменьшить и величину коррекции и облегчить ее практическое исполнение. Предыдущие разделы главы наглядно показывают цену этому уменьшению.

Поэтому следует принять все меры для того, чтобы повысить точность определения орбиты Апофиса и прогноза обстоятельств его пролета в 2029 г. Это позволит снизить необходимые пределы перемещения траектории вдоль линии вариации прицельного расстояния. В пределе желательно ограничиться изменением минимальной высоты пролета Апофиса над Землей всего лишь на несколько километров. Разумеется, это потребует и соответствующего повышения точности исполнения коррекции орбиты.

Повышение точности определения орбиты требует новых и продолжительных наблюдений астероида. Однако условия оптической и радиолокационной видимости Апофиса таковы, что новые наблюдения станут возможными лишь в краткий период 2012–2013 гг. Кроме того, ограничения в точности оптических наблюдений и дальности радиолокационных траекторных измерений не позволяют получить достаточно информации и довести расчет событий 2029 г. до желаемой точности, а следовательно, получить уверенность в благополучном исходе пролета Апофиса мимо Земли.

Кардинальным решением была бы посылка радиомаяка на астероид [Chesley, 2006], что могло бы обеспечить определение орбиты и прогнозирование текущих координат Апофиса с ошибками, не превышающими немногих километров. В этом случае останется проблема точной коррекции движения с ошибками исполнения такого же порядка и выбор соответствующего способа ее реализации.

Следует отметить одно существенное обстоятельство. Сложность коррекции весьма зависит от времени ее проведения. Действительно, проведение коррекции до 2029 г. в принципе должно увести орбиту Апофиса лишь от попадания в ЗРВ. Однако для этого достаточно изменить текущую высоту пролета над Землей всего на несколько километров. Поэтому для такой коррекции потребуется весьма малый импульс силы, получение которого вполне реально имеющимися технологическими средствами.

Напротив, предположим, что уточнение орбиты до пролета Апофиса в 2029 г. провести не удалось, и лишь измерения реальной высоты прохода астероида могут подать сигнал реальной опасности: пройдена ЗРВ! В этом случае возникнет задача увода астероида на величину нескольких радиусов Земли. Проведение такой коррекции сложнее на несколько порядков [Chesley, 2006], и ее реализация будет проблематичной.

Поэтому задача повышения точности определения орбиты Апофиса с помощью радиомаяка, доставленного на астероид, приобретает особую актуальность. Такая доставка может быть произведена посылкой специального космического аппарата к Апофису, выводимого стандартным и недорогим носителем типа «Союз», хорошо освоенным космической промышленностью России.

Космический аппарат такой миссии одновременно со своей основной задачей может выполнить программу исследования астероида, определив его массу и структурные характеристики, необходимые для технического проектирования возможной операции увода. Кроме того, в ходе миссии будут получены данные о минералогическом составе астероида, что само по себе явится ценным научным результатом.

В заключение необходимо отметить, что новое сближение Апофиса с Землей в 2036 г. означает появление новой картины расположения зон резонансного возврата в последующий период. Снова возникнет вопрос о том, когда можно ожидать новых опасных сближений с данным астероидом. Пока ответа на этот вопрос нет, и ситуация опасности вследствие наличия многих ЗРВ может повториться снова. Отсюда вытекает необходимость ее заблаговременного детального анализа. В частности, должен быть найден ответ на вопрос, существуют ли какие-либо условия и ограничения на проведение коррекции орбиты в 2029 г. сверх тех, которые обсуждались выше? Проще говоря, как увести коррекцией орбиту Апофиса до 2029 г. от удара по Земле в 2036 г., но так, чтобы не получить удара по Земле в дальнейшем, после 2036 г.? И, наконец, насколько подобная ситуация может повториться при появлении другого астероида, пролетающего слишком близко к Земле? Сегодня ответов на эти вопросы нет.

Таким образом, изучение динамики астероида Апофис ставит не только частные проблемы, но и помогает полнее осознать проблему астероидной опасности.

Данный текст является ознакомительным фрагментом.