10.2. Механика коррекции орбиты угрожающего тела
10.2. Механика коррекции орбиты угрожающего тела
В данном разделе рассматриваются соображения, касающиеся эффективности различных способов изменения орбиты угрожающего тела, производимого с целью его увода с орбиты столкновения. По сути дела, для такого увода необходимо просто изменить орбиту угрожающего тела так, чтобы оно в момент прогнозируемого удара заняло другое положение в пространстве. Возможен и другой вариант интерпретации увода — изменить движение угрожающего тела таким образом, чтобы оно оказалось в том же месте пространства, но в другой момент времени, когда Земли в нем не будет. Далее будет рассматриваться первый вариант как наиболее просто реализуемый.
Все способы увода основаны на изменении траектории небесного тела с помощью той или иной коррекции вектора скорости этого тела. Подобная коррекция может быть осуществлена либо мгновенно, либо в течение некоторого времени.
Полный анализ эффективности решения задачи увода требует рассмотрения относительного движения Земли и астероида по орбитам в четырехмерной пространственно-временной системе координат. Однако применительно к проблеме астероидной угрозы в такой общей постановке подобный анализ пока ждет своего обстоятельного проведения.
Поэтому здесь будет рассматриваться упрощенная задача оценки малых изменений траектории движения небесного тела, базирующаяся на линеаризации уравнений околокругового движения. Далее, для простоты получения предварительных количественных оценок, будут рассматриваться орбиты астероидов, не слишком отличающиеся от орбиты Земли. В частности, такой можно считать орбиту угрожающего астероида Апофис. Оправданием такого подхода служит, во-первых, тот факт, что значительная часть потенциально опасных объектов обращается по орбитам с небольшим эксцентриситетом. Во-вторых, при этом оказывается возможным получить достаточно наглядную интерпретацию увода и простые количественные соотношения, полезные для анализа угрожающей ситуации и ликвидации угрозы. Дальнейшее рассмотрение удобнее всего основывать на общем анализе кинематики околокругового движения небесного тела, проведенного в работе [Эльясберг, 1965]. В качестве примеров применения полученных результатов можно рассматривать две модели увода.
В первой модели принимается, что траектория угрожающего астероида проходит через центр Земли. Тогда целью увода должен являться пролет этого астероида на расстоянии, приближенно равном так называемому эффективному радиусу Земли Rз. Последний превышает геометрический радиус Земли. Во второй модели предполагается, что целью коррекции является увод траектории сближения астероида из зоны резонансного возврата. Из оценок протяженности такой зоны (см. главу 7) следует, что изменение минимального расстояния астероида от Земли на величину порядка 0,001 Rз в предшествующем сближении может гарантировать отсутствие столкновения при следующем резонансном возвращении астероида к Земле.
Общий анализ околокругового движения дает простые соотношения для оценок результатов изменения движения небесного тела при появлении корректирующих импульсов скорости. Эти оценки рассматриваются в следующем разделе этой главы. Нужно отметить, что приложение малых дополнительных ускорений является наиболее надежно рассчитываемой технологической схемой увода астероида с нежелательной орбиты. Эта технология рассматривается в разделе 10.4. Напротив, мгновенное приложение корректирующего импульса скорости на практике может осложняться многими вторичными эффектами. Так, например, обстоит дело в случае импульсного изменения скорости астероида ударом малого тела. Этот случай рассматривается далее в разделе 10.5.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
2. Теория излучения черного тела. Квант действия Планка
2. Теория излучения черного тела. Квант действия Планка Начало развитию квантовой теории положили относящиеся к 1900 г. работы Макса Планка по теории излучения черного тела. Попытка построить теорию излучения черного тела на основе законов классической физики привела к
ЗАДАЧА О ВРАЩЕНИИ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ
ЗАДАЧА О ВРАЩЕНИИ ТВЕРДОГО ТЕЛА ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ Проблема вращения твердого тела — характерный пример тех механико-математических проблем, которые стояли в центре теоретической механики во второй половине XIX в. Начиная с С.В. Ковалевской (1850—1891), русские ученые
17. Истинно твёрдые тела построены из кристаллов
17. Истинно твёрдые тела построены из кристаллов Итак, подавляющее большинство твердых тел имеет кристаллическое строение. Металлы и камни состоят из маленьких кристалликов – зёрен, видимых большей частью только в микроскоп.Свойства кристалликов, их размер, их взаимное
Как передают звук твердые тела
Как передают звук твердые тела Существует немаловажное различие между передачей звука через жидкие тела и газы, с одной стороны, и через твердые предметы – с другой. Различие это состоит в том, что в твердых телах наряду с продольными волнами могут возникнуть и
Глава 2 Малые тела Солнечной системы
Глава 2 Малые тела Солнечной системы …Я помню иногда Угасший метеор в пустынях мирозданья, Седой кристалл в сверкающей пыли… М. Волошин 2.1. Классификация малых тел Солнечной системы О, пыль миров! О, рой священных пчел! Я исследил, измерил, взвесил, счел, Дал имена,
7.1. Определение предварительной орбиты и ее последующие уточнения. Оценка точности элементов орбиты
7.1. Определение предварительной орбиты и ее последующие уточнения. Оценка точности элементов орбиты Для выделения потенциально опасных астероидов из общего числа АСЗ, для оценки вероятности столкновения их с Землей и предотвращения столкновений первостепенное
7.3. Возмущения, которые необходимо учитывать при уточнении орбиты и прогнозе движения
7.3. Возмущения, которые необходимо учитывать при уточнении орбиты и прогнозе движения Вычисление возможности столкновения того или иного небесного тела с Землей или иной планетой путем достаточно точного прослеживания траектории его движения на длительном интервале
10.8. Задачи увода реального угрожающего объекта
10.8. Задачи увода реального угрожающего объекта Недавнее обнаружение астероида Апофис показывает, что близкий пролет астероида, хотя и не задевающего Землю, оказывается весьма опасным ввиду возможных резонансных возвратов, рассмотренных в главе 7. Как было показано выше
ГЛАВА 3 ИЗЛУЧЕНИЕ ЧЕРНОГО ТЕЛА
ГЛАВА 3 ИЗЛУЧЕНИЕ ЧЕРНОГО ТЕЛА Как мы видели, к концу XIX в. ученые пришли к убеждению, что свет является электромагнитной волной. Однако в то же самое время, когда волновая теория получала все большую поддержку, были открыты новые явления, которые противоречили ей. Среди
Законы черного тела
Законы черного тела Закон Стефана привлек внимание его ученика Людвига Больцмана (1844—1906), который в 1884 г. вывел его, основываясь на принципах термодинамики и электромагнетизма. Он использовал соотношение между давлением излучения и вторым началом термодинамики, которое
Макс Планк и закон черного тела
Макс Планк и закон черного тела В то время как Физико-технический институт становился все более вовлеченным в абсолютные измерения излучения черного тела, в июне 1896 г. Вин покинул Берлин, чтобы стать профессором Высшей технической школы в Аахене. К счастью, Макс Планк,
Аномальная прецессия орбиты Меркурия
Аномальная прецессия орбиты Меркурия Ньютоновский закон обратных квадратов для гравитации (см. главу 2 и главу 23) требует, чтобы орбиты планет, вращающихся вокруг Солнца, были эллиптическими. На каждую планету действует также и гравитационное притяжение других
Аномальные орбиты галактик
Аномальные орбиты галактик В 1933 году астрофизик Фриц Цвикки из Калтеха заявил, что обнаружил крупную аномалию орбитального движения галактик относительно друг друга. Галактики находились в скоплении Кома (рис. 24.2), состоящем примерно из тысячи галактик