ГЛАВА 3. Электрическая искра

We use cookies. Read the Privacy and Cookie Policy

ГЛАВА 3.

Электрическая искра

Взявшись за вопросы электричества и магнетизма, Фарадей приблизил наступление великой экспериментальной революции. Его открытия, совершенные с использованием собственного метода, подсказанного твердой верой, привели к важным социальным изменениям: благодаря огромной силе, скрывавшейся в электромагнитных явлениях, не только возрос уровень жизни сограждан ученого, но и встал вопрос полного переоборудования производств, созданных в годы промышленной революции.

Как уже говорилось, в начале XIX века электричество больше связывалось с химией, чем с физикой, поэтому исследования Фарадея в области химии привели его к экспериментам с электричеством. В действительности ученый первым начал отделять электричество от химии, подчеркивая его фундаментальную связь с физикой.

Термин электричество происходит от древнегреческого слова «янтарь» — elektron. Этот материал, потертый о шерсть, притягивает волокна соломы. В 1600 году Уильям Гильберт (1544–1603) выяснил, что этим странным свойством обладает не только янтарь, но также стекло, сера, соль и другие материалы, которые мы называем диэлектриками. Век спустя Стивен Грей (1666–1736) провел эксперименты, доказавшие, что электричество переходит с одних тел на другие, если они соединены металлом. В 1773 году Шарль Дюфе (1698–1739) открыл два вида электростатического взаимодействия — смоляное и стеклянное. Разные виды взаимно притягиваются, одинаковые — отталкиваются. Позднее Бенджамин Франклин сделал вывод о том, что каждое тело обладает определенным количеством электрического флюида: при трении одного тела о другое нарушается равновесие, у одного из тел возникает нехватка флюида (-) (эквивалентно смоляному электричеству), а у другого — избыток (+) (эквивалентно стеклянному электричеству). К 1760-м годам Даниил Бернулли, Пристли и Кавендиш пришли к выводу о том, что электростатическое взаимодействие изменяется обратно пропорционально квадрату расстояния, как и в случае с гравитационным взаимодействием. В 1785 году Шарль Кулон измерил данную зависимость, представив ее в виде закона, который сейчас носит его имя.

И все же, несмотря на некоторые достижения, электричество оставалось абсолютной загадкой. По словам нобелевского лауреата по физике Леона Ледермана (р. 1922), в эпоху, когда жил Фарадей, электричество вызывало столько же вопросов, сколько сегодня вызывают кварки — мельчайшие неуловимые частицы, входящие в состав протонов и нейтронов. Ни одна из имевшихся тогда обоснованных научных формул не могла объяснить явление, при котором ток проходит по медной проволоке и притягивает металлические опилки, несмотря на то что между ними только пустое пространство.

Уже в 1812 году Фарадей, проявляя склонность к экспериментаторству, заинтересовался этой загадкой и изготовил гальваническую батарею из семи монеток по одному пенни, семи цинковых дисков и шести листов бумаги, смоченных в растворе соляной кислоты. К сожалению, юношу отвлекли от собственных исследований задания, полученные от Дэви, так что Фарадей вернулся к собственной линии экспериментов спустя многие годы — после смерти Дэви в 1829 году. Ученый приступил к работе по данной теме, что привело к революции в существующих взглядах на электричество и магнетизм.

После открытия в 1821 году датским химиком Хансом Кристианом Эрстедом магнитного поля, образуемого электрическим током, Фарадей еще раз обратился к практике и создал серию аппаратов для получения, как он это называл, электромагнитного вращения. Так впервые появились электрический двигатель и динамо-машина. В 1831 году благодаря экспериментам, поставленным совместно с изобретателем и членом Королевского общества Чарльзом Уитстоуном (1802–1875), Фарадей начал изучать явление электромагнитной индукции и открыл, что при движении магнита в катушке индуцируется электрический ток. Это позволило математически описать закон, согласно которому магнит может производить электричество.

Однако работу Фарадея нарушило неожиданное препятствие — любовь. Это была 23-летняя дочь одного из членов общины сандеманиацнев, Сара Барнард (1800–1879). Она сразу же привлекла внимание ученого, но поставленные им цели в науке были так высоки, что он считал любую другую деятельность, в том числе любовь, лишь отвлекающим от работы фактором. Фарадей даже написал стихотворение, в котором обвинял любовь в том, что она отвлекает мужчин от важных дел. По иронии судьбы, именно это стихотворение стало причиной сближения Майкла и Сары: девушка очень обиделась на текст, и Фарадею пришлось объясниться с ней, чтобы восстановить хорошие отношения. В результате 12 июня 1821 года Майкл Фарадей, сын кузнеца-сандеманианца, заключил брак с Сарой Барнард, дочерью серебрянщика и сандеманианского пастора.

Одержимый научной работой, он попросил у жены разрешения вместо свадебного путешествия посвятить время, которое они должны были провести вместе, написанию статьи по истории электричества и магнетизма. Его жена, терпеливая и хозяйственная, как все женщины в общине сандеманианцев, не возражала против этой необычной просьбы.

Тогда Фарадей принялся читать все книги из библиотеки Королевского института об электричестве и магнетизме, воспроизводя описанные в них эксперименты. К концу августа 1821 года он провел уже более сотни опытов, но один никак не выходил из его головы, даже когда статья была уже сдана в Annals of Philosophy. Это был эксперимент Ханса Кристиана Эрстеда, проведенный в 1819 году и ставший первым в истории опытом по электромагнетизму.

* * *

Первый эксперимент по электромагнетизму

Ханс Кристиан Эрстед родился в Дании в 1777 году, изучал физику в Копенгагенском университете, ему принадлежит первое эмпирическое доказательство взаимосвязи магнетизма и электричества. Об этом открытии стало известно в 1820 году, что ознаменовало собой новую научно-техническую революцию, подобную той, которую вызвало изобретение паровой машины. Первые опыты были проведены Эрстедом в 1819 году во время практического объяснения на занятии: он приближал намагниченную стрелку к проволоке, по которой проходил электрический ток. Стрелка разворачивалась перпендикулярно проволоке. При изменении направления тока стрелка поворачивалась на 180°, сохраняя перпендикулярность по отношению к проволоке.

Ханс Кристиан Эрстед