VI. Если в лесу падает дерево и никто этого не слышит, раздается ли шум?
VI. Если в лесу падает дерево и никто этого не слышит, раздается ли шум?
Наши примеры были сосредоточены на микроскопических частицах, однако мы вовсе не утверждали, что для того, чтобы вести себя по-квантовому, частица обязательно должна быть крошечной. Более того, на самом деле мы доказывали, что вся наша Вселенная имеет фундаментально квантовую природу. В самом деле, если микроскопический мир управляется исключительно квантовыми законами, нельзя ли обобщить их и счесть, что и мы подчиняемся этим правилам?
И да и нет.
Возьмем, к примеру, принцип неопределенности[33]. Когда мы говорили о нем, то оставили в стороне все сложные математические выкладки (читайте: всю математику), поэтому сейчас должны добавить еще одну детальку. Чем массивнее частица, тем точнее мы способны вычислить и ее местоположение, и ее скорость.
Например, представьте себе, что мы проделываем опыт с двумя щелями с потоком электронов. Если две щели разнесены на миллиметр, то мы вправе предположить, что неопределенность положения электрона – примерно миллиметр. Иначе никак – ведь мы не знаем, сквозь какую щель прошел электрон. Пожонглировав немного цифрами, мы обнаружим, что скорость электрона неопределенна примерно на 160 метров в час. Не слишком большое число, зато оно поддается измерению.
А если мы измерим скорость Хайда (когда он, например, скрывается с места преступления) с точностью до 160 метров в час? Это гораздо точнее, чем точность любого прибора, который может оказаться у вас под рукой. Предположим, что поскольку мы вычислили скорость Хайда с вполне осязаемой и измеряемой точностью, в его местоположении должна быть неопределенность. Она и есть. Местоположение Хайда неопределенно с точностью примерно одна десятиквинтиллионная доля размера ядра атома. На более мелком масштабе Хайд вел бы себя как волна. Поскольку сам он гораздо крупнее одной десятиквинтиллионной доли размера ядра атома, то во всех мыслимых ситуациях ведет себя как частица. То есть нет никаких представимых обстоятельств, в которых макроскопические предметы (вроде нас с вами, Джекила и Хайда) будут вести себя как квантовые объекты.
Вернемся к вопросу, с которого мы начали эту главу, и поговорим о классическом эксперименте, который глубоко запал в общественное сознание, – об Эрвине Шредингере и его легендарном коте.
Пусть Хайд, этот бессердечный негодяй, сделает ящик с флаконом яда внутри. Если некий радиоактивный атом, также заключенный в этот ящик, распадается за определенный отрезок времени, яд попадет в ящик. Если атом не распадется, яд останется во флаконе. Затем Хайд сажает в ящик кота и закрывает крышку[34].
Назначенное время прошло. Жив кот или мертв?
Этот вопрос Шредингер задал еще в далеком 1935 году – как бы между прочим, в одной длинной сугубо технической статье, – и обсуждение его заняло не больше места, чем в нашей книге. И хотя загадка шредингеровского кота ничего не говорит нам о том, как создать квантовый компьютер или микросхему, она заставляет задать некоторые вопросы о подлинной природе Вселенной. Оказывается, есть несколько способов отравить кота – или по крайней мере интерпретировать факт отравления.
Копенгагенская интерпретация
В 1927 году два основателя квантовой механики – Нильс Бор и Вернер Гейзенберг – сформулировали первую версию так называемой копенгагенской интерпретации квантовой механики. В целом она заключается именно в том, на что мы опирались все это время:
1) система описывается исключительно своей волновой функцией;
2) волновая функция показывает, что определенные измерения сугубо вероятностны;
3) как только мы делаем измерение, происходит коллапс волновой функции, и у нас остается конкретное число.
И хотя мы собираемся описать некоторые другие точки зрения, любой физик, работающий от звонка до звонка, считает копенгагенскую интерпретацию общепринятой версией событий, в основном потому, что она позволяет нам производить вычисления, не слишком задумываясь о том, что все это на самом деле значит[35].
Однако даже среди горячих сторонников квантовой механики существуют определенные разногласия относительно того, что на самом деле гласит копенгагенская интерпретация. Существует ли на самом деле волновая функция? И правда ли это, что реальность системы заключается только в том, что мы наблюдаем? Лично нам кажется, что это пустые придирки. Лично нам гораздо ближе версия Дэвида Мермина: «Если бы меня заставили изложить суть копенгагенской интерпретации одной фразой, я бы ответил: “Заткнись и считай!”»
Ближе к делу: как получается, что то, что мы что-то наблюдаем, приводит к коллапсу наблюдаемого? Вообще-то мы и сами состоим из субатомных частиц, которые также подчиняются законам квантовой механики. Откуда Вселенная знает, как перейти из состояния неопределенности до того, как произошло измерение, к определенности после этого?
У наблюдения есть последствия и похуже коллапса волновой функции. Вспомните наш разговор о том, что ваша волновая функция простирается до далеких звезд и, строго говоря, существует вероятность, что вас туда спонтанно телепортирует? Так вот, когда вас наблюдают здесь, на Земле, у вашей волновой функции происходит коллапс, а значит, ваша волновая функция где бы то ни было еще исчезает. Если вас это не беспокоит, советуем задуматься. Что-то происходящее здесь мгновенно влияет на происходящее в нескольких световых годах отсюда – а значит, это влияние распространяется со скоростью больше скорости света.
Давайте забудем обо всем этом и просто посмотрим, что говорит нам Бор про кота. Жив или мертв шредингеровский кот? Согласно копенгагенской интерпретации, да.
Серьезно.
Копенгагенская интерпретация говорит нам: «И то и другое с определенной вероятностью. Если мы откроем ящик, то произойдет коллапс волновой функции, и останется только одна возможность, которую мы и пронаблюдаем».
Чушь какая! Что за глупости – думать, будто кот может быть одновременно и живым, и мертвым! Именно это и хотел сказать Шредингер[36].
Теперь посмотрим с точки зрения квантовой механики на старинную загадку: если дерево падает в лесу, где его никто не слышит, производит ли оно грохот? «Нет, – отвечает копенгагенская интерпретация. – Для начала, оно даже и не падает, пока не появляется наблюдаемых свидетельств того, что это произошло». Какая нелепость – только представьте себе, что такой крупный предмет, как вековое дерево, настолько подвержен влиянию того, наблюдают его или нет. Это правда. Но в чем же разница между деревом и котом? Или котом и ядром атома?
Бор считал, что на ситуацию влияет не просто наблюдение, а осознанное наблюдение. Если бы вместо шредингеровского кота у нас был бы шредингеровский аспирант, мы бы практически не сомневались, что более или менее вменяемый аспирант наблюдал бы за системой сам. Почему же так важно, чтобы наблюдателем был именно человек?
С философской точки зрения, самая серьезная проблема с копенгагенской интерпретацией выражается одним вопросом: есть ли разница между тем, что знает ученый, и тем, что знает Вселенная?
Здравый смысл подсказывает, что в случае шредингеровского кота разница очень велика. Очевидно, что Вселенная должна «знать», жив кот или мертв, даже если ученый не знает. В некотором смысле копенгагенская интерпретация утверждает, что неважно, знает ли Вселенная о том, жив кот или мертв, до того, как ящик откроют. Это не изменит ничего наблюдаемого.
Здесь чего-то не хватает. С одной стороны, мы уже видели в опыте с двумя щелями, что прямое или косвенное наблюдение электрона способно заставить его перейти из состояния неопределенности к поведению, подобающему частице. Если мы не будем тревожить электрон, глядя на него, он буквально пройдет через обе щели. А «выбирает» только одну он лишь в том случае, если у нас хватает наглости подглядывать за ним.
Если все обстоит именно так, в чем тогда принципиальное отличие шредингеровского кота? Это просто более сложная система, в которую по случаю входит не просто один электрон, но еще и радиоактивный образец, флакон яда и квадрильоны атомов, составляющих кота. Те из нас, кто придерживается механистического взгляда на Вселенную, сочтут, что это приведет к невозможной ситуации, поскольку на самом деле мы должны посмотреть на вещи гораздо шире.
Поскольку все частицы во Вселенной в той или иной степени взаимодействуют, Вселенная в целом, в том числе и ученые, и их оборудование, есть одна гигантская волновая функция. Если воспринять это утверждение буквально, становится, мягко говоря, не по себе. Это значит, что все наблюдения, ощущения и поступки как таковые суть комбинация более чем одной возможности, просто вероятность одной из них гораздо, гораздо больше вероятности остальных.
Лично нам вероятность такой «вселенной суперпозиции» кажется настолько неприятной, что мы предпочтем жить во вселенной, где реальность формируется под воздействием сознания[37].
Причинная интерпретация. Бом-бом-бом…
Если копенгагенская интерпретация вас нервирует (и кто вас в этом упрекнет?), не волнуйтесь. Это не единственное заведение в нашем городке. Существуют и другие интерпретации квантовой механики. Все они используют те же уравнения или по крайней мере получают те же результаты[38]. Однако они, прямо скажем, по-разному объясняют то, что происходит на самом деле. Иначе говоря, мы не в состоянии проверить экспериментально, какая интерпретация верна, и оказываемся во владениях философии.
В 1952 году Дэвид Бом, который тогда работал в Университете Сан-Паулу, выдвинул «причинную интерпретацию» квантовой механики. Бом был категорически не согласен с тем, что шредингеровский кот «полужив – полумертв». Он считал, что на самом деле все то, что мы называли неопределенным – местоположение, скорость, признаки жизни нашего кота, – на самом деле четко определено. Но (и это очень большое НО), хотя частица и Вселенная знают эти определенные значения, это не гарантирует, что их знаете вы.
Бом предположил, что кроме волновой функции должны быть еще «скрытые переменные», и он был не одинок. Одним из первых сторонников и защитников скрытых переменных был сам Эйнштейн, которому следствия квантовой механики категорически не нравились.
Согласно Бому, скрытые переменные включают в себя качества вроде местоположения и скорости, которые, как говорит обычная квантовая механика, совершенно неопределенны. Это все равно что гонять на водных лыжах по зыбучему океану. В каждый конкретный момент лыжи двигаются с определенной скоростью и находятся в определенном месте. Однако если вы попытаетесь точно определить положение лыж, то увидите, что они хаотически болтаются туда-сюда. Подобным же образом волновая функция, согласно причинной интерпретации, «двигает» частицу, подталкивая ее в разные стороны, так что если бы мы проводили опыт с двумя щелями, то траектория электрона делала бы якобы случайные волнообразные колебания.
С одной стороны, причинная интерпретация очень утешает. Она заверяет нас, что абсолютная реальность существует, даже если мы не знаем, какова она сейчас и какова она будет в следующую секунду. Электрон на самом деле находится в каком-то одном определенном месте. Нет никакого мистера Хайда! Есть только доктор Джекил. Переодетый[39].
Более того, причинная интерпретация решает очень важную проблему, с которой не справилась копенгагенская. Согласно Бому, никакого «коллапса волновой функции» не происходит. Волновая функция никуда не девается, потому что, делая измерения, мы всего-навсего обнаруживаем, где частица была все это время. Мы все равно влияем на нее самим актом наблюдения, но так, что это ничуть не противоречит классической интуиции.
Мы уже упоминали, что причинная интерпретация получает те же результаты, что и обычная квантовая механика. Это и плюс, и минус. Подобно копенгагенской интерпретации, причинная интерпретация Бома требует, чтобы сигналы можно было отправлять со скоростью выше скорости света (пусть и крайне редко).
И если при обычных обстоятельствах версия Бома приводит к тем же результатам, что и классическая квантовая механика, нужно сделать по меньшей мере одно предупреждение. Все, о чем мы тут говорили, предполагало, что мы говорим о низких энергиях и частицах, которые уже некоторое время существовали. Есть множество ситуаций, для которых такое определение не подходит, и нам приходится решать вопросы о том, откуда взялись частицы и что происходит, когда мы приближаемся к скорости света. Обычная квантовая механика была расширена и обобщена настолько, что готова дать ответы на подобные вопросы, а версия Бома – нет. Возможно ли это? Покажет только время.
Однако не будем затевать дискуссию о том, что можно и чего нельзя сделать с формулами, поскольку это отвлекает нас от проблемы кошачьей смертности. Что там с котом? Жив он или мертв – по этой интерпретации?
Вообще говоря, Бом утверждает, что лично он не знает, но кот наверняка либо жив, либо мертв, – или то или другое. Мы еще не открыли ящик, а когда откроем, сразу узнаем ответ.
Как это скучно! «Не знаю. Давайте проверим». Скучно, но зато далеко не так мозголомно, как если бы нам сказали «и то и другое».
Интерпретация «множественных миров»
Как неприятно, однако, сознавать, что Вселенная могла пойти и по тому пути, и по другому, но почему-то произвольно выбрала какой-то один. В 1957 году Хью Эверетт, который тогда работал в Пентагоне, предложил интерпретацию «множественных миров».
Эверетт предположил, что каждое случайное событие – например, то, через какую именно щель проскочил электрон, – порождает две разные, однако параллельные вселенные, которые неразличимы во всем, кроме того факта, что в одной электрон прошел в щель А, а в другой – в щель В. С течением времени вселенные снова и снова расщепляются, практически бесконечное количество раз, порождая тем самым огромное количество параллельных вселенных.
Согласно Эверетту, эти многочисленные миры могут затем интерферировать друг с другом. С математической точки зрения это практически ничем не отличается от обычной квантовой механики. Например, если мы представим себе электрон в эксперименте с двумя щелями, то в нашей Вселенной, скажем, электрон проходит в левую щель, а в других вселенных – в правую. Затем волновые функции разных вселенных интерферируют друг с другом, и если повторить опыт с несколькими электронами, то получим тот самый рисунок из множества полос, который мы уже видели.
В этом случае тоже нет никакого Хайда. Так получается просто потому, что поскольку в каждой вселенной есть свой доктор Джекил, который проделывает тот же опыт, эти множественные Джекилы интерферируют друг с другом.
Расщепляются не только частицы. Расщепляетесь и вы. Если вы задумаетесь о том, что вы будете делать через 10 минут, то это «вы» относится к целому множеству различных «вы». Каким же из этих «вы» станете вы в конце концов? Всеми сразу. Просто каждый конкретный «вы» будет помнить ту историю, которая произошла в его вселенной. Это значит, что где-то есть «вы»-телезвезда и «вы»-конструктор звездолетов[40]. Просто не все возможности одинаково вероятны.
За счет возникновения бесконечного множества вселенных Эверетт сумел дать утешительный ответ и на наш вопрос о шредингеровском коте. Как и Бом, он ответил: «Не знаю. Кот или жив, или мертв, и единственный способ это выяснить – открыть ящик. Однако если мы откроем крышку, то получим не более чем информацию. Это никак не изменит реальность».
В целом это тот же ответ, который мы дали с точки зрения причинной интерпретации Вселенной, но есть один важный нюанс. Если окажется, что кот жив, это верно лишь для нашей Вселенной. Существуют и другие вселенные – бесконечное множество других вселенных, – в которых кот мертв.
Как выяснилось, реальность – явление сугубо местное.
Данный текст является ознакомительным фрагментом.