Путешествие на звезду

We use cookies. Read the Privacy and Cookie Policy

Путешествие на звезду

На небе есть звезды, расположенные от нас, например, на расстоянии, которое луч света проходит за 40 лет. Поскольку мы уже знаем, что движение со скоростью, большей скорости света, невозможно, то позволительно было бы прийти к выводу, что достигнуть этой звезды за промежуток времени-, меньший 40 лет, нельзя. Такое умозаключение, однако, ошибочно, так как оно не учитывает изменения времени, связанного с движением.

Предположим, что мы летим на звезду в ракете Эйнштейна со скоростью в 240000 километров в секунду. Для жителей Земли мы достигнем звезды через (300 000 X 40) / 240 000 = 50 лет.

Для нас же, летящих в ракете Эйнштейна, это время сократится при упомянутой скорости полета в отношении 10:6. Следовательно, мы достигнем звезды не через 50 лет, а через (6 / 10) X 50 = 30 лет.

Увеличивая скорость ракеты Эйнштейна, приближая ее к скорости света, можно сколько угодно сокращать время, которое понадобится путешественникам, чтобы добраться до столь отдаленной звезды. Теоретически при достаточно быстром полете можно было бы достичь звезды и вернуться обратно на Землю хоть за одну минуту! На Земле, однако, при этом все равно пройдет 80 лет.

Может показаться, что этим открываются возможности для продления человеческой жизни. Правда, лишь с точки зрения других людей, потому что человек стареет в соответствии со «своим» временем. Однако, к сожалению, эти перспективы при ближайшем рассмотрении оказываются более чем мизерными.

Начать с того, что человеческий организм не приспособлен к пребыванию в условиях длительного ускорения, заметно превышающего земное ускорение силы тяжести. Поэтому, чтобы разогнаться до скорости, приближающейся к световой, требуется весьма длительное время. Расчеты показывают, что при полугодовом путешествии и ускорении, равном земному ускорению силы тяжести, можно выиграть всего полтора месяца. Если такое путешествие продлить, выигрыш во времени будет быстро возрастать. Летя в ракете год, можно дополнительно выиграть еще полтора года, двухлетнее путешествие даст нам 28 лет, а за три года нашего пребывания в ракете на Земле пройдет более 360 лет!

Цифры, казалось бы, довольно утешительные.

Хуже обстоит с затратами энергии. Энергия движущейся ракеты, вес которой предельно скромен — 1 тонна, при полете со скоростью 260 000 километров в секунду (такая скорость необходима для «удвоения» времени, то есть для того, чтобы за каждый год путешествия в ракете на Земле проходило два года) равна 250 000 000 000 000 киловатт-часов. Столько энергии вырабатывается на всем земном шаре за много лет.

Однако мы вычислили лишь энергию ракеты в полете. Нами не учтено, что предварительно требуется еще разогнать наш летательный аппарат до скорости 260 000 километров в секунду! А по окончании путешествия ракету придется затормозить, чтобы можно было безопасно приземлиться. Сколько на это пойдет энергии?

Даже если бы в нашем распоряжении было топливо, дающее струю, которая вытекает из реактивного двигателя с самой большой из возможных скоростей — со скоростью света, то и тогда эта энергия должна была бы в 200 раз превышать количество, подсчитанное выше. То есть нам пришлось бы израсходовать столько энергии, сколько производит человечество за несколько десятилетий. Действительная же скорость выброса струи из двигателей ракеты в десятки тысяч раз меньше скорости света. И это делает потребные затраты энергии на предпринятый нами мысленно полет невероятно большими.