III. Что же такое, в самом деле, электроны, если их как следует рассмотреть?
III. Что же такое, в самом деле, электроны, если их как следует рассмотреть?
Все странности квантовой механики были бы невинными шалостями, если бы относились только к свету. Свет — особая статья: у него вообще нет массы, и к тому же он постоянно движется со скоростью с. Как вы, наверное, догадались, беда в том, что фокусы квантовой механики распространяются не только на фотоны.
Самые легкие частицы, с которыми мы можем без труда иметь дело, — это электроны. Если вы не слишком много о них знаете, это ничего, мы как следует перемоем им косточки в главе 4. Сейчас вам надо знать только одно — что с электронами мы имеем дело постоянно. Традиционные (не плазменные) телевизоры делаются на основе «электронно-лучевых трубок», а это всего-навсего интеллигентное название для баллистических электронных пушек, которые пуляются вам в лицо электронами на околосветовой скорости.
Что будет, если мы в ходе опыта с двумя щелями будем стрелять электронами, а экран поставим флуоресцентный? Каждый раз, когда электрон попадает во флуоресцентный экран, мы видим вспышку света, так что можем сосчитать, сколько электронов попадает в каждую конкретную часть экрана. Если бы Хайд мог наложить свои корявые злодейские руки на электронный луч и если бы он настроил источник так, чтобы посылать только один электрон за раз, он все равно получил бы на экране рисунок, характерный для волн, а не для частиц. То же поведение, которое мы наблюдали у фотонов!
Провести этот опыт в реальности было невозможно по техническим причинам до самого недавнего времени, хотя физическое сообщество ничуть не сомневалось, к каким результатам он приведет. В 1989 году Акира Тономура из Университета Гакусюин и его сотрудники провели опыт с двумя щелями для электронов, и вас ничуть не удивит, когда вы узнаете, что электронный луч дает абсолютно тот же результат, характерный для. волн, — множество линий на экране — что и световой луч. По крайней мере мы надеемся, что вас это ничуть не удивит.
По данным Тономуры и др., 1989
На тот случай, если вам нужно получить подзатыльник от Хайда, чтобы лучше дошло, повторим: тот факт, что электрон способен интерферировать сам с собой, доказывает, что на самом деле он проходит одновременно в обе щели. Однако рассечь электрон напополам нельзя даже самой острой катаной. Ну, как вам парадокс? Электрон проходит в обе щели, даже не разделяясь надвое.
Конечно, это справедливо не только для фотонов и электронов. В последнее время этот опыт провели с самыми разными микроскопическими объектами, например с нейтронами и атомами. И все они вели себя совершенно так же — по-квантовому странно.
Мы признаем, что навязчиво рекламируем вам опыт с двумя щелями, но, уверяем вас, без этого никак. Темы вроде относительности позволяют ученому-физику принять факты наподобие скорости света, а затем построить теорию для объяснения, в общем-то, всего остального, не покидая уютной кладовки в доме своих родителей. Квантовая механика, напротив, практически целиком построена на опытах, опытах и еще раз опытах, причем зачастую оказывается, что прежние теории не в силах объяснить происходящее.
Обратная сторона опыта Тономуры — та же, что и в опыте Уилера с отложенным выбором. Если мы каким-то образов будем следить за электронами, чтобы посмотреть, в какую именно щель они пролетают, то произойдет коллапс волновой функции, и мы заставим электроны вести себя, как подобает частицам.
«Коллапс волновой функции» — фраза, которой физики бросаются направо и налево, для них это все равно что сказать «вычислить собственные значения гамильтониана» или «посидеть дома одному в субботу вечером». Мы так к ней привыкли, что забываем, что требуются дополнительные объяснения[25].
А вот о волновой функции имеет смысл кое-что добавить.
В квантовой модели волной является все. Если внимательно посмотреть на электроны, окажется, что они вовсе не похожи на шарики — скорее на облачка. Там, где облако (или, если вы цените постоянство терминологии, «волновая функция») плотнее всего, мы имеем самую высокую вероятность обнаружить электрон в данный момент времени.
Когда мы говорим, что электрон «ведет себя как волна», или когда вы слышите разговоры об электронном облаке, это не значит, что электрон как таковой — это такой бесформенный предмет вроде сахарной ваты. Также мы не хотим, чтобы вы считали волновую функцию электрона чем-то вроде тасманийского дьявола из старых мультиков — помните, он бегал так быстро, что казался размазанным пятном?
Электрон и в самом деле находится сразу в нескольких местах, и если мы вычислим его точное местоположение, то изменим природу системы. Нет никакого способа заранее узнать, где именно находится электрон, и изолировать его возможно только посредством наблюдения. Как только мы выявляем местоположение электрона, например, попадаем в него фотоном, происходит коллапс волновой функции, и в следующий миг мы почти наверняка знаем, где находится электрон. Волновая функция уже не распространяется на большую область пространства.
Представьте себе, что Джекил и Хайд сидят и играют в «Морской бой»[26].
Как мы знаем, Хайд прожженный жулик, поэтому некоторое время, когда доктор Джекил называет координаты, Хайд постоянно утверждает, что он промахнулся, а сам передвигает свои корабли. В конце концов Хайд понимает, что обманывать противника бесконечно ему не удастся, поэтому он вынужден поставить свои корабли в определенные места на доске и признаться, что удар попал в цель. Очевидно, то, что Джекил определил местоположение судна, повлияло на ситуацию.
Иными словами, вспомните свою юность. Когда вы были молоды, весь мир лежал у ваших ног. Перед вами раскрывались бесчисленные возможности: кем быть? Физиком-ядерщиком? Космологом? Астрономом? А теперь подумайте о том, чего вы достигли. Все потенциалы, все неопределенности схлопнулись в одно состояние, в то, как вы на самом деле распорядились своей жизнью, — в одну дорогу.
Данный текст является ознакомительным фрагментом.