III. Зачем разным частицам так много разных правил?

We use cookies. Read the Privacy and Cookie Policy

III. Зачем разным частицам так много разных правил?

Сейчас, когда мы установили несколько основных законов, общих для всех фундаментальных сил, настала пора поговорить об играх, начиная с самых простых и очевидных.

Гравитация

Просим заметить, что люди, само собой, звали о существовании гравитации задолго до того, как сэр Исаак Ньютон «открыл» ее в 1687 году. Например, к тому времени уже давным-давно умели строить катапульты. И прекрасно понимали, что если пустить стрелу вверх, то она впоследствии пробьет доспехи — хорошо бы на другой стороне поля. Без гравитации обслуживающему персоналу гильотины пришлось бы сидеть и дожидаться, когда же ее лезвие случайным образом упадет вниз.

Но Ньютон при помощи простого набора уравнений сумел с большой точностью предсказать падение яблока, орбиту Луны, пути планет. Закон, который он открыл, был прост — и описывал колоссальное множество явлений. Этот закон показывал, что все предметы во Вселенной притягивают друг друга, и чем дальше они друг от друга находятся, тем слабее это притяжение, или гравитация.

Ньютон, однако, разобрался в этой истории не до конца. Лишь в 1916 году Альберт Эйнштейн, разработав общую теорию относительности, объяснил нам, в чем сущность силы тяжести. Однако нам станет интересно, где ошибся Ньютон, только когда мы начнем говорить о машине времени (глава 5), Вселенной в целом (глава 6) и теории Большого взрыва (глава 7). Пока что будем считать, что он был полностью прав.

Мы уже говорили, что каждая из этих сил очень похожа на игру с мячиком и ракетками. Если бы нам предложили выбрать конкретный вид спорта, мы бы сказали, что гравитация похожа на бадминтон. В нее играют на большом поле (в масштабах всей Вселенной), а удары делают совсем слабенькие. Легко представить себе, как в вас попадают воланчиком, — и согласитесь, что по сравнению с ударами разными другими спортивными штуковинами Такая травма надолго не запоминается.

Эта игра отлично подходит для начала спортивной карьеры, поскольку в нее могут играть не просто игроки любого возраста, а вообще кто угодно. Все частицы, и массивные, и наоборот, создают гравитационные поля и притягиваются друг к другу.

Электромагнетизм

В отличие от гравитации, которая всегда привлекает и. притягивает, электромагнетизм может и притягивать, и отталкивать. Вы уже знаете, что частицы несут один из трех видов электрического заряда: положительный, отрицательный или нейтральный. Если два электрона оказываются бок о бок, они всегда отталкивают друг друга. Пара, в которой одна частица заряжена положительно, а другая — отрицательно, например протон и электрон, всегда притягивается друг к другу. Если обе частицы нейтральны, они ничего не делают.

Два электрона притягивают друг друга силой гравитации, но при этом отталкивают друг друга силой электромагнитного взаимодействия. В нас силен дух нездорового соперничества, примерно как в очереди, поэтому мы сразу зададим вопрос, который наверняка так и вертится у всех на языке: какая сила сильнее — сила тяжести или электромагнитная?

Побеждает электромагнитная — и не по пенальти, а всухую. Электромагнитная сила отталкивания между двумя электронами более чем в 1040 раз сильнее, чем гравитационное притяжение, — вот почему мы вправе позволить себе пренебречь гравитацией, когда говорим о размерах порядка атома и меньше.

Наверное, вы заметили, что мы говорим об «электромагнитной» силе, но пока что затронули лишь ее «электрическую» часть. С точки зрения здравого смысла электричество и магнетизм — совсем разные вещи, но на фундаментальном уровне разница лишь в подходе. Неподвижные заряды создают электрическое поле, а подвижные — магнитное поле: вот как работает электромагнит, вот как мы понимали спины у заряженных частиц в главе 3. Подобным же образом изменение магнитного поля может создавать электрические поля — что, в свою очередь, создает электрический ток.

Поразительно, но факт: именно электромагнетизм объясняет практически все физические явления в повседневной жизни. Именно электрическое отталкивание не позволяет вашему седалищу продавить кресло. Именно электрическое притяжение скрепляет молекулы и служит основой для всех химических реакций. И — да, конечно, именно статическое электричество заставляет воздушный шарик прилипать к стенке.

А как же магнетизм? Если не считать магнитных нашлепок на холодильнике, в повседневной жизни мы с ним вроде бы и не сталкиваемся. Зато он играет крайне важную роль в ускорителях частиц. Когда заряженная частица (например, протон) находится в магнитном поле, она движется по круглой орбите. Чем сильнее магнитное поле, тем быстрее движение по орбите. Бели поставить в кольцо БАК набор магнитов, то можно будет ловить протонный луч на скорости, близкой к скорости света.

Электромагнетизм — это как теннис. Эта игра гораздо динамичнее многих других, а маленькие пушистенькие желто-зеленые мячики (фотоны) ударяют с такой силой, что только держись. Нейтральные частицы в эту игру не берут, потому что фотоны их «не видят» и потому что они, как всегда, забыли ракетку у мамы дома.

Играть в электромагнетизм могут любые заряженные частицы.

Сильное взаимодействие

Мы были вынуждены ознакомить вас с электромагнетизмом, поскольку существуют наблюдаемые феномены наподобие существования молекул и атомов, которые гравитацией не объяснишь. Однако гравитация и электромагнетизм, даже в сочетании, не в силах объяснить всего.

Рассмотрим гелий. Он состоит из двух нейтронов и двух протонов. Что касается электромагнетизма, нейтроны в этой игре не участвуют, а вот протоны крайне, крайне, крайне не любят общества друг друга. Только представьте себе — в ядре каждого атома гелия электрическая сила отталкивания между протонами составляет около 22,5 килограмма! Почему же гелий не разрывается в клочки под воздействием своего же электромагнитного отталкивания?

Значит, должна быть еще одна сила, которая действует и на протоны, и на нейтроны и заставляет их держаться вместе. Эта сила называется сильным, взаимодействием и действует лишь на очень-очень маленьких масштабах — около 10-15 метра. Чтобы вам не казалось, что мы жонглируем цифрами, и вы поняли, что это за масштаб, отметим, что размер атомного ядра по сравнению с вашим ростом — это все равно что ваш рост по сравнению с расстоянием до альфы Центавра.

Однако кроличья нора на поверку оказывается еще глубже. В 1960-х годах в ходе эксперимента по глубоко неупругому рассеянию в Стэнфордском линейном ускорителе ученые стреляли в атомы высокоэнергичными электронами. Получившийся рикошет показал, что внутри протонов и нейтронов есть что-то еще — протоны и нейтроны нельзя считать фундаментальными частицами, они состоят из чего-то еще более мелкого. Эти мелкие частички получили название кварков.

Кварки, как и электроны и нейтрино, — последние игроки в нашей метафизической игре. Существует шесть разновидностей кварков (их славные мордашки вы увидите в приложении к этой главе), а пока что нас интересуют только две: u-кварк (с электрическим зарядом в +2/3) и d-кварк (с электрическим зарядом в -1/3). В протонах содержится два u-кварка и d-кварк[67], а в нейтронах — два d-кварка и u-кварк[68].

Скрепляет их сильное взаимодействие. На самом деле сильное взаимодействие настолько сильно, что вне протонов и нейтронов кварки не встречаются.

Сильное взаимодействие очень похоже на пинг-понг. Это напряженный поединок в небольшом замкнутом пространстве. В игры с сильным взаимодействием играют только кварки (и протоны с нейтронами, которые состоят из кварков).

Слабое взаимодействие

Когда мы знакомили вас с сильным взаимодействием, то заявили, что нам приходится это делать, потому что существуют загадочные явления, которые невозможно объяснить при помощи двух других сил (гравитации и электромагнетизма). Об одном таком мы уже говорили — это распад нейтрона. Мы сказали, что нейтрон, предоставленный сам себе, распадается на протон, электрон в антинейтрино. Попробуйте-ка объяснить это при помощи одной из сил, о которой мы уже говорили!

Придется нам изобрести (ладно, хорошо, гипотетически выдвинуть) еще одну силу. Задействовав все имеющиеся в нашем распоряжении творческие способности, мы титаническим усилием выдумываем слабое взаимодействие. Слабое взаимодействие характерно в основном для нейтрино, поскольку, раз они нейтральны, они уж точно не умеют играть в электромагнетизм, а в сильное взаимодействие играют только кварки. Как выяснилось, нейтрино и электроны очень похожи, за исключением небольших различий в заряде, и слабое взаимодействие, среди прочего, позволяет нейтрино превращаться в электроны и наоборот. Каждую секунду сквозь вас проходят триллионы нейтрино. Солнце производит их квадрильонами, и все же гигантские детекторы засекают лишь несколько нейтрино в день. Редкость — верный признак того, что слабое взаимодействие не зря получило такое название. А поскольку нейтрино взаимодействуют только посредством слабого взаимодействия, нам и не удается наблюдать их часто.

Слабое взаимодействие очень похоже на бросание тяжелого гимнастического мяча. Летит он очень недалеко, бьет несильно и за типичное время успевает неимоверно надоесть. Вообще-то нам уже намекнули, почему это так скучно. Гимнастический мяч очень тяжелый, и даже атлеты-силачи легендарных времен не могли бросить его достаточно далеко.

В слабое взаимодействие играют кварки, нейтрино и электроны. Поскольку, как мы уже сказали, их очень много и все лезут поучаствовать, игра идет очень медленно, и ничего особенно интересного не происходит.

Данный текст является ознакомительным фрагментом.