Гравитационные волны
И только когда физики поняли взаимосвязь между электромагнетизмом и светом, они задались вопросом, не происходит ли то же самое с гравитационным полем. Это может показаться академическим вопросом, поскольку для создания настолько большого гравитационного поля, чтобы его можно было измерить, нам нужен объект размером с какую-нибудь планету или Луну. Мы не собираемся трясти Землю, чтобы возбудить волны, но найти такой объект во Вселенной – вообще-то не проблема. Наша галактика полна двойных звезд – систем, в которых две звезды вращаются друг вокруг друга, естественно, возбуждая при этом колебания гравитационного поля. Приводит ли это к распространению гравитационных волн?
Интересно, что гравитация в том виде, как ее описал Ньютон или Лаплас, не предполагает наличия какого-либо излучения. Теория говорит, что, когда планета или звезда движется, ее гравитационное притяжение изменяется мгновенно во всей Вселенной. То есть тут не распространяющаяся волна, а мгновенное преобразование всей Вселенной.
Это лишь один из пунктов, по которым ньютоновская гравитация, как оказалась, не слишком хорошо согласовывалась с меняющимися физическими концепциями XIX века. Электромагнетизм, и особенно ключевая роль скорости света, сыграли важную роль и вдохновили Альберта Эйнштейна и других ученых на создание теории относительности, что и было сделано в 1905 году. Согласно этой теории, ничто не может двигаться быстрее света – даже гипотетические колебания гравитационного поля. От чего-то нужно было отказаться. После десяти лет напряженной работы Эйнштейну удалось построить принципиально новую теорию гравитации, известную как общая теория относительности, которая полностью заменила теорию Ньютона.
Так же как и интерпретация Лапласа ньютоновской теории гравитации, общая теория относительности Эйнштейна описывает гравитацию в терминах поля, которое определено в каждой точке пространства. Но поле Эйнштейна с точки зрения используемой математики гораздо сложнее, чем поле Лапласа, и может отпугнуть – вместо гравитационного потенциала, определяемого всего одним числом в каждой точке пространства, Эйнштейн использовал так называемый «метрический тензор», который можно определить в каждой точке совокупностью десяти независимых чисел. Эта математическая сложность укрепила репутацию общей теории относительности как теории, очень трудной для понимания. Но основная ее идея столь же проста, сколь и глубока: метрика описывает кривизну самого пространства-времени. Согласно Эйнштейну, гравитация является проявлением искривления и растяжения самой ткани пространства, способом измерения расстояний и отрезков времени во Вселенной. Когда мы говорим, что «гравитационное поле равно нулю», мы имеем в виду, что пространство-время гладкое, а геометрия Евклида, которую мы учили в школе, справедлива.
Одно радует: из общей теории относительности следует, что, как и в случае с электромагнитными волнами, рябь в гравитационном поле приводит к распространению гравитационных волн со скоростью света. И мы засекли их, хотя и не напрямую. В 1974 году Рассел Халс и Джозеф Тейлор обнаружили двойную систему, в которой оба объекта – нейтронные звезды, быстро вращающимися на очень близких орбитах. Общая теория относительности предсказывает, что такая система должна терять энергию, испуская гравитационные волны, и по мере сближения звезд это должно привести к постепенному уменьшению периода обращения. Халс и Тейлор смогли измерить это изменение периода, и оно оказалось в точности таким, как предсказывала теория Эйнштейна. В 1993 году за эту работу они были удостоены Нобелевской премии.
И все-таки это было косвенным измерением гравитационных волн. Мы, конечно, пытаемся увидеть их, и в настоящее время проводится ряд экспериментов по поискам гравитационных волн, приходящих от астрофизических источников. Как правило, в экспериментах стараются обнаружить изменение расстояний между зеркалами лазеров, отстоящими друг от друга на несколько километров. При прохождении гравитационной волны пространство-время должно то растягиваться, то сжиматься – и тогда и расстояние между зеркалами должно периодически изменяться. Этот крошечный эффект может быть обнаружен при измерении количества длин волн, умещающихся между двумя зеркалами, в зависимости от времени. В США эти эксперименты проводит Лазерная интерферометрическая гравитационно-волновая обсерватории (LIGO), включающая в себя две отдельные лаборатории – одна в штате Вашингтон, а другая в Луизиане. Они находятся в постоянном контакте с обсерваториями VIRGO в Италии и GEO 600 в Германии. Ни одна из этих лабораторий гравитационные волны пока не нашла, но ученые настроены оптимистически и надеются на недавно проделанную модернизацию оборудования. Если гравитационные волны все-таки будут обнаружены, мы получим прямое подтверждение тому, что гравитационное поле колеблется и испускает гравитационные волны.