Глава 15. Галогены и халькогены. Хлор и сера
15.1. Общая характеристика галогенов и халькогенов
Галогены ("рождающие соли") – элементы VIIA группы. К ним относятся фтор, хлор, бром и йод. В эту же группу входит и неустойчивый, а потому не встречающийся в природе астат. Иногда к этой группе относят и водород.
Халькогены ("рождающие медь") – элементы VIA группы. К ним относятся кислород, сера, селен, теллур и практически не встречающийся в природе полоний.
Из восьми существующих в природе атомов элементов этих двух групп наиболее распространены атомы кислорода (w = 49,5 %), за ним по распространенности следуют атомы хлора (w = 0,19 %), далее – серы (w = 0,048 %), затем – фтора (w = 0,028 %). Атомов остальных элементов в сотни и тысячи раз меньше. Кислород вы уже изучали в восьмом классе (гл. 10), из остальных элементов наиболее важными являются хлор и сера – с ними вы и познакомитесь в этой главе.
Орбитальные радиусы атомов галогенов и халькогенов невелики и лишь у четвертых атомов каждой группы приближаются к одному ангстрему. Это приводит к тому, что все эти элементы, представляют собой элементы, образующие неметаллы и только теллур и йод проявляют некоторые признаки амфотерности.
Общая валентная электронная формула галогенов – ns2np5, а халькогенов – ns2np4. Маленькие размеры атомов не позволяют им отдавать электроны, напротив, атомы этих элементов склонны их принимать, образуя однозарядные (у галогенов) и двухзарядные (у халькогенов) анионы. Соединяясь с небольшими атомами, атомы этих элементов образуют ковалентные связи. Семь валентных электронов дают возможность атомам галогенов (кроме фтора) образовывать до семи ковалентных связей, а шесть валентных электронов атомов халькогенов – до шести ковалентных связей.
В соединениях фтора – самого электроотрицательного элемента – возможна только одна степень окисления, а именно –I. У кислорода, как вы знаете, максимальная степень окисления +II. У атомов остальных элементов высшая степень окисления равна номеру группы.
Простые вещества элементов VIIA группы однотипны по строению. Они состоят из двухатомных молекул. При обычных условиях фтор и хлор – газы, бром – жидкость, а йод – твердое вещество. По химическим свойствам эти вещества сильные окислители. Из-за роста размеров атомов с увеличением порядкового номера их окислительная активность снижается.
Из простых веществ элементов VIA группы при обычных условиях газообразны только кислород и озон, состоящие из двухатомных и трехатомных молекул, соответственно; остальные – твердые вещества. Сера состоит из восьмиатомных циклических молекул S8, селен и теллур из полимерных молекул Sen и Ten. По своей окислительной активности халькогены уступают галогенам: сильным окислителем из них является только кислород, остальные же проявляют окислительные свойства в значительно меньшей степени.
Состав водородных соединений галогенов (НЭ) полностью отвечает общему правилу, а халькогены, кроме обычных водородных соединений состава H2Э, могут образовывать и более сложные водородные соединения состава Н2Эn цепочечного строения. В водных растворах и галогеноводороды, и остальные халькогеноводороды проявляют кислотные свойства. Их молекулы – частицы-кислоты. Из них сильными кислотами являются только HCl, HBr и HI.
Для галогенов образование оксидов нехарактерно, большинство из них неустойчиво, однако высшие оксиды состава Э2О7 известны для всех галогенов (кроме фтора, кислородные соединения которого не являются оксидами). Все оксиды галогенов – молекулярные вещества, по химическим свойствам – кислотные оксиды.
В соответствии со своими валентными возможностями халькогены образуют два ряда оксидов: ЭО2 и ЭО3. Все эти оксиды кислотные.
Гидроксиды галогенов и халькогенов представляют собой оксокислоты.
15.2. Хлор
Хлор самый распространенный, а потому и важнейший из галогенов.
В земной коре хлор встречается в составе минералов: галита (каменной соли) NaCl, сильвина KCl, карналлита KCl·MgCl2·6H2O и многих других. Основной промышленный способ получения – электролиз хлоридов натрия или калия.
Простое вещество хлор – газ зеленоватого цвета с едким удушающим запахом. При –101 °С конденсируется в желто-зеленую жидкость. Хлор весьма ядовит, во время первой мировой войны его даже пытались использовать в качестве боевого отравляющего вещества.
Хлор – один из самых сильных окислителей. Он реагирует с большинством простых веществ (исключение: благородные газы, кислород, азот, графит, алмаз и некоторые другие). В результате образуются галогениды:
Cl2 + H2 = 2HCl (при нагревании или на свету);
5Cl2 + 2P = 2PCl5 (при сжигании в избытке хлора);
Cl2 + 2Na = 2NaCl (при комнатной температуре);
3Cl2 + 2Sb = 2SbCl3 (при комнатной температуре);
3Cl2 + 2Fe = 2FeCl3 (при нагревании).
Кроме того хлор может окислять и многие сложные вещества, например:
Cl2 + 2HBr = Br2 + 2HCl (в газовой фазе и в растворе);
Cl2 + 2HI = I2 + 2HCl (в газовой фазе и в растворе);
Cl2 + H2S = 2HCl + S (в растворе);
Cl2 + 2KBr = Br2 + 2KCl (в растворе);
Cl2 + 3H2O2 = 2HCl + 2H2O + O2 (в концентрированном растворе);
Cl2 + CO = CCl2O (в газовой фазе);
Cl2 + C2H4 = C2H4Cl2 (в газовой фазе).
В воде хлор частично растворяется (физически), а частично обратимо реагирует с ней (см. § 11.4 в). С холодным раствором гидроксида калия (и любой другой щелочи) аналогичная реакция протекает необратимо:
Cl2 + 2OH
В результате образуется раствор хлорида и гипохлорита калия. В случае реакции с гидроксидом кальция образуется смесь CaCl2 и Ca(ClO)2, называемая хлорной известью.
С горячими концентрированными растворами щелочей реакция протекает иначе:
3Cl2 + 6OH
В случае реакции с KOH так получают хлорат калия, называемый бертолетовой солью.
Хлороводород – единственное водородное соединение хлора. Этот бесцветный газ с удушающим запахом хорошо растворим в воде (нацело реагирует с ней, образуя ионы оксония и хлорид-ионы (см. § 11.4). Его раствор в воде называют соляной или хлороводородной кислотой. Это один из важнейших продуктов химической технологии, так как расходуется соляная кислота во многих отраслях промышленности. Огромное значение она имеет и для человека, в частности потому, что содержится в желудочном соке, способствуя перевариванию пищи.
Хлороводород раньше получали в промышленности, сжигая хлор в водороде. В настоящее время потребность в соляной кислоте почти полностью удовлетворяется за счет использования хлороводорода, образующегося в качестве побочного продукта при хлорировании различных органических веществ, например, метана:
CH4 + Cl2 = CH3 + HCl
И лаборатории хлороводород получают из хлорида натрия, обрабатывая его концентрированной серной кислотой:
NaCl + H2SO4 = HCl + NaHSO4 (при комнатной температуре);
2NaCl + 2H2SO4 = 2HCl + Na2S2O7 + H2O (при нагревании).
Высший оксид хлора Cl2O7 – бесцветная маслянистая жидкость, молекулярное вещество, кислотный оксид. В результате реакции с водой образует хлорную кислоту HClO4, единственную оксокислоту хлора, существующую как индивидуальное вещество; остальные оксокислоты хлора известны только в водных растворах. Сведения об этих кислотах хлора приведены в таблице 35.
Таблица 35.Кислоты хлора и их соли
С/O
хлора
Формула
кислоты
Название
кислоты
Сила
кислоты
Название
солей
–I
HCl
хлороводородная
сильная
хлориды
+I
HClO
хлорноватистая
слабая
гипохлориты
+III
HClO2
хлористая
слабая
хлориты
+V
HClO3
хлорноватая
сильная
хлораты
+VII
HClO4
хлорная
сильная
перхлораты
Большинство хлоридов растворимо в воде. Исключение составляют AgCl, PbCl2, TlCl и Hg2Cl2. Образование бесцветного осадка хлорида серебра при добавлении к исследуемому раствору раствора нитрата серебра – качественная реакция на хлорид-ион:
Ag
Из хлоридов натрия или калия в лаборатории можно получить хлор:
2NaCl + 3H2SO4 + MnO2 = 2NaHSO4 + MnSO4 + 2H2O + Cl2
В качестве окислителя при получении хлора по этому способу можно использовать не только диоксид марганца, но и KMnO4, K2Cr2O7, KClO3.
Гипохлориты натрия и калия входят в состав различных бытовых и промышленных отбеливателей. Хлорная известь также используется как отбеливатель, кроме того ее используют как дезинфицирующее средство.
Хлорат калия используют в производстве спичек, взрывчатых веществ и пиротехнических составов. При нагревании он разлагается:
4KClO3 = KCl + 3KClO4;
2KClO3 = 2KCl + O2
Перхлорат калия тоже разлагается, но при более высокой температуре: KClO4 = KCl + 2O2
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) хлора, б) хлороводорода (и соляной кислоты), в) хлорида калия и г) хлорида бария.
15.3. Сера
В различны условиях устойчивы различные аллотропные модификации элемента сера. При обычных условиях простое вещество сера представляет собой желтое хрупкое кристаллическое вещество, состоящее из восьмиатомных молекул:
Это так называемая ромбическая сера (или α-сера) S8.(Название происходит от кристаллографического термина, характеризующего симметрию кристаллов этого вещества). При нагревании она плавится (113 °С), превращаясь в подвижную желтую жидкость, состоящую из таких же молекул. При дальнейшем нагревании происходит разрыв циклов и образование очень длинных полимерных молекул – расплав темнеет и становится очень вязким. Это так называемая
В природе встречаются месторождения самородной серы, из которых ее и добывают. Большая часть добываемой серы используется для производства серной кислоты. Часть серы используют в сельском хозяйстве для защиты растений. Очищенная сера применяется в медицине для лечения кожных заболеваний.
Из водородных соединений серы наибольшее значение имеет сероводород (моносульфан) H2S. Это бесцветный ядовитый газ с запахом тухлых яиц. В воде он малорастворим. Растворение физичекое. В незначительной степени в водном растворе происходит протолиз молекул сероводорода и в еще меньшей степени – образующихся при этом гидросульфид-ионов (см. приложение 13). Тем не менее, раствор сероводорода в воде называют сероводородной кислотой (или сероводородной водой).
На воздухе сероводород сгорает:
2H2S + 3O2 = 2H2O + SO2 (при избытке кислорода).
Качественной реакцией на присутствие сероводорода в воздухе служит образование черного сульфида свинца (почернение фильтровальной бумажки, смоченной раствором нитрата свинца:
H2S + Pb2
Реакция протекает в этом направлении из-за очень малой растворимости сульфида свинца.
Кроме сероводорода, сера образует и другие сульфаны H2Sn, например, дисульфан H2S2, аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS2.
В соответствии с валентными возможностями своих атомов сера образует два оксида: SO2 и SO3. Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты.
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами.
Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:
Cu + 2H2SO4 = CuSO4 + SO2
2KBr + 3H2SO4 = 2KHSO4 + Br2 + SO2
Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией.
Будучи двухосновной кислотой, серная кислота образует два ряда солей: средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Качественной реакцией на сульфат-ион является осаждение исследуемым раствором сульфата бария из подкисленного соляной кислотой раствора хлорида бария.
2.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения. 3.Составьте уравнения реакций, данных в тексте параграфа описательно.
4.Составьте уравнения реакций, характеризующих химические свойства а) серы, б) сероводорода (и сероводородной кислоты), в) диоксида серы и г) серной кислоты.
15.4. Производство серной кислоты
Современные промышленные методы производства серной кислоты основаны на получении диоксида серы (1-й этап), окислении его в триоксид (2-й этап) и взаимодействии триоксида серы с водой (3-й) этап.
Диоксид серы получают сжигая в кислороде серу или различные сульфиды:
S + O2 = SO2;
4FeS2 + 11O2 = 2Fe2O3 + 8SO2.
Процесс обжига сульфидных руд в цветной металлургии всегда сопровождается образованием диоксида серы, который и идет на производство серной кислоты.
В обычных условиях окислить кислородом диоксид серы невозможно. Окисление проводят при нагревании в присутствии катализатора – оксида ванадия(V) или платины. Несмотря на то, что реакция
2SO2 + O2
обратима, выход достигает 99 %.
Если пропускать образующуюся газовую смесь триоксида серы с воздухом через чистую воду, большая часть триоксида серы не поглощается. Чтобы предотвратить потери, газовую смесь пропускают через серную кислоту или ее концентрированные растворы. При этом образуется дисерная кислота:
SO3 + H2SO4 = H2S2O7.
Раствор дисерной кислоты в серной называют олеумом и часто представляют как раствор триоксида серы в серной кислоте.
Разбавляя олеум водой, можно получить как чистую серную кислоту, так и ее растворы.
а) диоксида серы, б) триоксида серы,
в) серной кислоты, г) дисерной кислоты.