12.2. Космологические данные по наблюдению реликта

Реликтовое излучение обычно характеризуют его температурой, ее усредненное по всему небу значение составляет около 2,7 К, и отклонения от него очень невелики. Это само по себе интересно, поскольку разные области, соответствующие разным «пятнам» на небе размером в пару лунных дисков, не успели бы обменяться информацией и выравнять свою температуру, если бы в очень раннюю эпоху жизни Вселенной не происходили особые процессы (см. раздел 11.7 «Стадия инфляции»). Однако измерения температуры в разных точках неба дают лишь незначительно (на малые доли процента) различающиеся результаты. Эта анизотропия температуры реликтового излучения позволяет определять ряд космологических параметров.

Распределение анизотропии температуры реликтового излучения по небу имеет довольно сложный характер. Его можно рассчитать в рамках заданной космологической модели, при этом различные детали распределения определяются разными космологическими параметрами. Соответственно, практически всю космологию можно восстановить из данных по реликту (конечно, использование дополнительных данных повышает точность и достоверность), но для этого надо проводить очень точные наблюдения, ставшие возможными только в XXI в.

Анизотропия реликтового излучения позволяет определять космологические параметры.

Наблюдать реликтовое излучение с Земли достаточно сложно из-за поглощения в атмосфере. Кроме того, для получения полной информации нужен обзор всего неба. Поэтому основные данные о реликтовом излучении были получены с помощью космических аппаратов COBE (Cosmic Background Explorer, Исследователь космического фона, 1989–1992), WMAP (Wilkinson Microwave Anisotropy Probe, Датчик микроволновой анизотропии, 2001–2010) и Planck (2009–2013). Обработка данных занимает много времени (в частности, важно учесть «лишнее» излучение, порождаемое внегалактическими источниками и пылью в нашей Галактике), поэтому на момент написания (август 2017 г.) книги обработка данных спутника Planck все еще продолжается, хотя уже было представлено много важных результатов, полученных этим аппаратом (в том числе и чисто космологических).

Основные данные по реликтовому излучению получают с помощью специализированных космических аппаратов.

Наблюдения также можно проводить в верхней атмосфере, запуская научную аппаратуру на высотных аэростатах. Наконец, есть несколько мест на Земле (Антарктида, сухие высокогорья), где аппаратура может работать и на поверхности. Недостатком этих подходов является то, что не удается наблюдать всю небесную сферу. Тем не менее такие проекты также вносят большой вклад в исследования реликта.

Наблюдения реликтового излучения позволяют определить геометрию Вселенной, которая оказалась плоской (см. раздел 11.4 «Геометрия Вселенной»). Это измерение возможно благодаря так называемому доплеровскому пику в распределении неоднородностей реликта по угловым масштабам. В ранней Вселенной вещество и излучение были достаточно тесно связаны, так что колебания и флуктуации плотности вещества сказывались на поведении излучения. Колебания в веществе распространялись со скоростью звука, которая тогда была очень велика, однако и для них существовал свой горизонт – звуковой. Нам важен размер звукового горизонта в эпоху последнего рассеяния, когда реликтовое излучение отделилось от вещества. В этом излучении отпечатались колебания вещества, и мы можем их наблюдать, изучая распределение температуры реликта по небу. В каких-то местах вещество двигалось к нам, в каких-то от нас, где-то вещества было больше, где-то меньше. Это движение и флуктуации привели к неоднородности в распределении температуры реликтового излучения: где-то она на тысячную долю процента больше, где-то меньше. Самые большие неоднородности (пятна, раскиданные по всему небу) соответствуют угловому масштабу около 0,6°, и связаны они именно с размером звукового горизонта. Во вселенных с разной кривизной мы бы видели разные картины анизотропии реликта. Тщательный анализ показал, что наша Вселенная – плоская, т. е. имеет нулевую (на современном уровне точности измерений) кривизну, и мы видим эти флуктуации температуры без существенных искажений, связанных с кривизной Вселенной.

Наблюдения реликта показали, что геометрия Вселенной близка к плоской.

Некоторые параметры распределения температуры реликта по небесной сфере сильно зависят от полной плотности вещества (темное + барионное), другие – именно от доли барионов. Благодаря работе космических аппаратов WMAP и Planck, а также ряда наземных установок у нас есть возможность определять эти параметры по наблюдениям реликтового микроволнового фона (как правило, важно лишь дополнительно измерить постоянную Хаббла в настоящее время на основе других наблюдательных данных).

Мы наблюдаем реликтовое излучение, прошедшее через всю видимую Вселенную. Соответственно, в характеристиках реликта отпечатались вся история и даже космография. В истории Вселенной был период, когда рекомбинировавшее было вещество снова реионизовалось ультрафиолетовым излучением первых звезд и квазаров. Это произошло на красном смещении около 10, т. е. спустя 400 с лишним миллионов лет после начала расширения, и мы видим это в данных по реликту. Далее реликтовое излучение линзируется на разнообразных структурах по пути к нам, и мы можем изучить статистические свойства этих структур. Наконец, реликтовые фотоны взаимодействуют с горячим газом в скоплениях галактик (эффект Сюняева – Зельдовича), что позволяет определить ряд интересных параметров.