2. Уравнение состояния идеального газа

2. Уравнение состояния идеального газа

Изучение эмпирических газовых законов (Р. Бойль, Ж. Гей-Люссак) постепенно привело к представлению об идеальном газе, поскольку обнаружилось, что давление данной массы любого газа при постоянной температуре обратно пропорционально объему, занимаемому этим газом, и термические коэффициенты давления и объема с высокой точностью совпадают для различных газов, составляя, по современным данным, 1/273 град–1. Придумав способ графического представления состояния газа в координатах «давление – объем», Б. Клапейрон получил объединенный газовый закон, связывающий все три параметра:

PV = BT,

где коэффициент В зависит от вида газа и его массы.

Только через сорок лет Д. И. Менделеев придал этому уравнению более простой вид, записав его не для массы, а для единицы количества вещества, т. е. 1 кмоля.

PV = RT, (1)

где R – универсальная газовая постоянная.

Физический смысл универсальной газовой постоянной. R – работа расширения 1 кмоля идеального газа при нагревании на один градус, если давление не меняется. Для того, чтобы понять физический смысл R, представим себе, что газ находится в сосуде при постоянном давлении, и мы повысим его температуру на ?T, тогда

PV1 = RT1, (2)

и

PV2 = RT2. (3)

Вычитая из (3) уравнение (2), получим

P(V2V1) = R(T2T1).

Если правая часть уравнения равна единице, т. е. мы нагрели газ на один градус, тогда

R = P?V

Поскольку P = F/S, а ?V равно площади сосуда S, умноженной на высоту подъема его поршня ?h, имеем

Очевидно, что справа получим выражение для работы, и это подтверждает физический смысл газовой постоянной.

Данный текст является ознакомительным фрагментом.