7. Понятие ДЭС. Модельные представления о строении ДЭС на границе раздела фаз

7. Понятие ДЭС. Модельные представления о строении ДЭС на границе раздела фаз

ДЭС – двойной электрический слой – тонкий поверхностный слой из пространственно разделенных электрических зарядов противоположного знака, образующихся на границе двух фаз.

Если погрузить металлическую пластину (электрод) в раствор соли данного металла, то может произойти один из двух процессов.

1. Пусть металл является активным восстановителем, т. е. окисляется, тогда из-за диполей воды, содержащихся в данном растворе, какая-то часть атомов металла оставляет свои электроны на электроде и из-за процесса гидратации в виде гидратированных ионов переходит в раствор по реакции.

Общий вид реакции

или, без учета гидратации ионов,

Этот процесс называется окислением. В результате него металлическая пластинка заряжается отрицательно, а катионы металла притягиваются к ней, и прилегающий к пластинке слой раствора заряжается положительно. На границе металл-раствор возникает ДЭС. Химически активные металлы как: Na, Mg, Al, Zn и др. имеют большие концентрации поверхностного раствора, состоящего из гидратированных катионов металла. При погружении в раствор своей соли любой концентрации происходит дополнительное растворение металла с образованием ДЭС, так как всегда концентрация поверхностного раствора всегда больше концентрации соли металла, и металл заряжается отрицательно.

2. Пусть металл является слабым восстановителем, тогда его ионы, содержащиеся в растворе соли, являются сильными окислителями. Некоторая часть ионов подходит к металлической поверхности и восстанавливается за счет свободных электронов, присутствующих в ней по реакции:

В результате процесса восстановления металлическая пластинка заряжается положительно и притягивает отрицательно заряженные частицы. При погружении малоактивных благородных металлов (Cu, Ag, Au и др.) в раствор соли наблюдается обратная картина, от первой: при любой достижимой концентрации, концентрация поверхностного раствора меньше концентрации соли металла, поэтому ионы металлов осаждаются на электроде, а в приэлектродном пространстве накапливается избыточный отрицательный заряд за счет анионов соли или ионов гидроксидной группы OH. После достижения равновесной разницы потенциалов между металлом и раствором переход ионов в раствор прекращается.

Модельные представления о строении ДЭС на границе раздела фаз:

1) модель Гельмгольца;

2) модель Гуи, Чапмена;

3) модель Штерна;

4) модель Грэма;

5) модель современная.

Первая модель ДЭС открыта Гельмгольцем, он представлял ДЭС в виде двух обкладок плоского конденсатора, одна обкладка расположена непосредственно на поверхности электрода, вторая – в электролите.

d = диаметру молекул Н2О.

Так как все заряды сконцентрированы в двух плоскостях, то изменение потенциала по мере удаления от поверхности электрода Е0 будет описываться прямой линией.

Еа – величина электродного удаления от поверхности электрода потенциала.

Используя теорию конденсатора, Гельмгольц рассчитал величину заряда ДЭС и величину дифференциальной емкости ДЭС.

q – величина заряда = (D/4?2)Е0, С – дифференциальная емкость ДЭС = D/4?2, D – диэлектрическая проницаемость раствора, d – расстояние между обкладками конденсатора.

Теория Гельмгольца позволила объяснить ход электрокапиллярной кривой, рассчитать величину дифференциальной емкости ДЭС, хорошо совпадающую с экспериментально полученными данными. Наилучшая сходимость была получена для концентрированных растворов элементов, однако данная теория не объясняла зависимость плотности заряда и дифференциальной емкости ДЭС от состава электролита и концентрации компонента.

Недостатки теории Гельмгольца:

1) не учитывалось тепловое движение ионов в растворе;

2) не учитывался размер ионов;

3) не рассматривались процессы адсорбции на границе раздела фаз (электрод – электролит).

Ее применяют только к концентрированным растворам, не содержащим поверхностно-активные вещества (ПАВ).

Б. Гуи, Д. Чапмен учли тепловое движение в растворах электролитов.

Эта теория позволяет рассчитать плотность ?заряда ДЭС и величину дифференциальной емкости С, они учли влияние концентрации, но рассчитанные значения дифференциальной емкости С, но они меньше сходятся с экспериментально полученными результатами. Теория Гуи, Чапмена применима к разбавленным растворам электролитов.

Недостатки:

1) не учитываются размеры ионов;

2) не учитывается явление адсорбции на границе раздела фаз.

В. Штерн учел, что в электролитах наблюдается электростатическое взаимодействие между ионами, тепловое движение компонентов электролита и возможное специфическое взаимодействие компонентов электролита с поверхностью электрода.

Он соединил теорию Гельмгольца с теорией Гуи, Чапмен, в результате ДЭС представлялся состоящим из двух частей:

1) плотной части Гельмгольца;

2) диффузной части по модели Гуи, Чапмена.

За счет адсорбции ПА компонента может происходить перезаряд поверхности. Штерн считал, что адсорбция происходит на границе плотной и диффузной части ДЭС. Эта граница называется плоскостью Гельмгольца.

Теория Штерна легла в основу современных представлений и развивалась в работах Грема, Фрумкина, Эршлера, Есина и др.

Недостатки:

1) не учитывал дискретность зарядов;

2) величина емкости, рассчитанная по модельным представлениям Штерна, не соответствовала экспериментально полученным результатам.

Г. Греем рассмотрел возможность адсорбции ПА анионов внутри плотной части ДЭС, он ввел понятие внутренней и внешней плоскости Гельмгольца.

Адсорбция анионов происходит на внутренней плоскости Гельмгольца.

Недостаток: рассматривал адсорбцию только анионов и не учитывал дискретность зарядов.

О. А. Есин рассмотрел дискретность зарядов и показал, что ионы, образующие внутреннюю и внешнюю плоскости Гельмгольца, взаимодействуют между собой, образуя диполи.

Указанное взаимодействие влияет на величину диффузной емкости с ДЭС. О. А. Есин рассмотрел возможность адсорбции на внутренней плоскости Гельмгольца как катионов, так и анионов.

Данный текст является ознакомительным фрагментом.