Солнечные батареи

Солнечные батареи

Обращает на себя внимание весьма малый коэффициент использования солнечной энергии при сжигании топлива. Очень уж многозвенен этот процесс: солнечная энергия — химический процесс расщепления углекислоты и получение потенциальной химической энергии кислорода и углерода — последующее окисление углерода и образование тепловой энергии — преобразование полученной теплоты в двигателе внутреннего сгорания в механическую энергию движения ротора — преобразование механической энергии ротора в динамомашине в электрическую энергию, — наконец, передача электроэнергии на производство и новое ее преобразование в соответствии с потребностью.

Во всем этом цикле превращений участвует только крайне малая часть солнечной энергии, дошедшей до Земли. Но, кроме того, в каждом звене этой цепи превращений теряется много энергии на побочные процессы. В каждом звене коэффициент полезного действия представляет собой малую дробь, а общий коэффициент полезного действия солнечной энергии тем более мал, ибо он представляет собой произведение нескольких малых дробей.

Естественно, что научно-техническая мысль работает над сокращением длинной цепи превращений по крайней мере до одного — двух звеньев. Потери солнечной энергии резко сократились бы, если бы она была непосредственно превращена в электрическую энергию. Да и долю используемой на это солнечной энергии можно было бы резко увеличить.

Но в принципе такая проблема уже решена в фотоэлементах (см. опыт Столетова). В них как раз и происходит непосредственное превращение световой энергии в энергию потока электронов, т. е. в электрический ток. Надо только изготовить достаточное количество надежно и экономично работающих фотоэлементов и покрыть ими крыши домов и все свободные площади. Но это «только» — легко сказать. На деле задача эта не проста. Для ее выполнения потребовалось бы большое количество редких химических материалов. Их надо подвергнуть весьма тщательной химической очистке и добиться почти абсолютной однородности. Изготовление фотоэлементов в больших масштабах технически сложно и пока дорого. Пока они изготовляются лишь в количествах, необходимых для приборостроения и автоматики. Конечно, когда маленький фотоэлемент полностью заменяет человека, как это имеет место, например, в автоматических контролерах, стоящих при входе в московское метро, это выгодно. Еще более выгодно применять системы фотоэлементов на космических кораблях. Там они используются для ориентации корабля (по Солнцу или по Луне), а также для получения электротока от солнечных лучей (солнечные батареи). На космических кораблях фотоэлементы имеют особое преимущество, поскольку они обеспечивают длительное действие приборов и не утяжеляют корабль. Однако пока они дают немного энергии и применяются на космических кораблях лишь как дополнение к обычным химическим батареям.

В этом методе непосредственного превращения солнечной энергии в электрическую есть еще много технических и экономических трудностей. Но в принципе здесь все уже ясно. Поэтому многие ученые видят в нем главный и перспективный источник получения энергии для нужд человека. Эти идеи особенно активно развивал выдающийся русский физик академик А. Ф. Иоффе (1880—1960).