«МОЗАИЧНЫЙ» КРИСТАЛЛ
«МОЗАИЧНЫЙ» КРИСТАЛЛ
Цель этого очерка — рассказать о том, как в реальном кристалле «поселился» дефект в виде границы между отдельными блоками, образующими кристалл. Рассказ следует начать издалека, с 1913—1914 гг., когда во многих лабораториях мира и теоретики и экспериментаторы, вдохновленные недавно сделанным открытием возможности исследовать структуру кристалла с помощью рентгеновских лучей, занимались изучением интенсивности лучей, отраженных от кристалла.
На первых порах в этих исследованиях при сопоставлении теории и эксперимента возникла сложная ситуация. Теоретики (как и подобает теоретикам!) построили теорию, основанную на предположениях, очень упрощающих задачу. Слово «очень» подчеркивается, так как теоретики предположили, что те вторичные волны, которые под влиянием падающего рентгеновского луча испускают атомы, ни между собой, ни с первичным лучом не взаимодействуют. В действительности, разумеется, взаимодействуют, и существенно, а теоретики этим пренебрегли. Вдумаемся: по существу, при этом они пренебрегли тем, что в кристалле атомы расположены упорядоченно, так как именно в связи с упорядоченностью взаимодействие между вторичными волнами может быть значительным. Практически вместо кристалла они рассмотрели просто совокупность независимых атомов. Изучая кристалл, они пренебрегли кристаллом! Назовем эту теорию «теория № 1».
После этой была построена более точная теория, учитывающая то, чем «теория № 1» пренебрегла. Назовем ее «теория № 2». Естественно ожидать, что «№ 2» — теория более точная — будет лучше согласовываться с результатами опытов, чем «теория № 1». А на поверку оказалось, что формулы «теории № 1» несравненно лучше описывают результаты измерений, чем формулы «теории № 2». Вот конкретный пример того, что скрывается за словом «лучше». Из опыта следует, что отражающая способность кристалла алюминия при одной из его ориентаций характеризуется числом 580. Из «теории № 1» следует число 818, а из «теории № 2» — 19,6.
Где же искать выход из этой странной ситуации, когда оказывается, что чем хуже, тем лучше? Ведь такой выход обязан быть! Вскоре он нашелся. Экспериментаторы заметили, что результаты измерений обычно оказываются между результатами, предсказанными каждой из теорий. Если кристалл немного исказить — продеформировать, пошлифовать поверхность, — результаты опытов приближаются к предсказаниям «теории № 1». Предсказания «теории № 2» эксперимент подтверждает лишь в редких, исключительных случаях, если опыт ставится с кристально чистым кристаллом, практически свободным от дефектов. Это свидетельство эксперимента указало путь к решению проблемы: теоретики предсказали, что модель идеального кристалла, лежащая в основе «теории
№ 2», — фикция. Реальный кристалл, видимо, состоит из маленьких областей-блоков. Блоки немного повернуты друг относительно друга и, следовательно, разделены границами. Вторичные волны, испускаемые взаимно повернутыми блоками, друг с другом практически не взаимодействуют, они «не в фазе». И поэтому, чем меньше размер блоков, тем в большей степени, с точки зрения первичного рентгеновского луча, реальный кристалл лишен строгой пространственной периодичности. А именно это молчаливо и предполагала несовершенная «теория № 1». Для согласования теории с экспериментом в то, теперь уже далекое, время физики оказались перед необходимостью умозрительно «поселить» в кристалле невидимый ими дефект — границу раздела между блоками, за которыми укрепилось название «блоки мозаики».
Многие годы «блоки мозаики» существовали не-увиденные, заявляющие о себе главным образом в опытах, в которых изучалась интенсивность рентгеновских лучей, отраженных поверхностью реального кристалла. Со временем, этак через четверть века, выяснилось, что границы между блоками представляют собой организованные ряды дислокаций. Структура этих границ зависит от того, из каких дислокаций они составлены и на какой угол друг относительно друга повернуты блоки, разделяемые границей.
В качестве примера границы между блоками мозаики обсудим простейшую границу, которая состоит из краевых дислокаций с одинаково ориентированными векторами Бюргерса. Воспользовавшись схемой такой границы, легко убедиться в том, что вектор Бюргерса b, расстояние между дислокациями h и угол между граничными блоками ? связаны соотношением
? ? b / h
Если ? рад, то h ? b/? ? 2• 10-4 см. При таком расстоянии между дислокациями они могут быть обнаружены обычной техникой химического травления!
Границу между мозаичными блоками можно промоделировать методом БНЛ: неподалеку один от другого надо выдуть два небольших скопления из пузырьков, сделать их края ровными, а затем скопления приблизить до соприкосновения. Мы это делали. Изменили угол ориентации между скоплениями и увидели много интересного в строении границы между блоками.
Мозаичные блоки и границы между ними — более чем полувековой объект исследований многих лабораторий мира. Добавим: важный объект, так как структура границы и размеры блока определяют очень многое в свойствах реальных кристаллов. А начало этих исследований восходит к тем работам, с рассказа о которых очерк начат.