Глава 23 ПОЛЫЕ РЕЗОНАТОРЫ

Глава 23

ПОЛЫЕ РЕЗОНАТОРЫ

§ 1. Реальные элементы цепи

§ 2. Конденсатор на больших частотах

§ 3. Резонансная полость

§ 4. Собственные колебания полости

§ 5. Полости и резонансные контуры

Повторить; гл. 2. (вып. 2) «Резонанс»; гл. 49 (вып. 4)

«Собственные колебания».

§ 1. Реальные элементы цепи

Если посмотреть на любую цепь, состоящую из идеальных импедансов и генераторов, со стороны какой-нибудь пары клемм, то при данной частоте она будет эквивалентна генера­тору $, последовательно соединенному с импе­дансом z. Если приложить к этим клеммам на­пряжение V и вычислить из уравнений силу тока, то между током и напряжением должна получиться линейная зависимость. Поскольку все уравнения линейны, то и I должно зави­сеть от V линейно и только линейно. А самое общее линейное выражение можно записать в виде

(23.1)

Вообще-то и z и eмогут как-то очень сложно за­висеть от частоты w. Однако соотношение (23.1) — это то соотношение, которое получилось бы, если бы за клеммами находился просто генера­тор e(w), последовательно соединенный с им­педансом z(w).

Можно поставить и обратный вопрос: имеет­ся какое-то электромагнитное устройство с двумя полюсами (выводами) и нам известна связь между I и V, т. е. известны eи z как функции частоты; можно ли всегда найти такую комбинацию идеальных элементов, которая даст эквивалентный внутренний импеданс z? Ответ на это таков: для любой разумной, т. е. физи­чески осмысленной функции z(w), действительно возможно построить с любой степенью точности модель с помощью контура, составленного из конечного числа идеальных элементов. Мы не собираемся изучать общую задачу, а только посмотрим, основываясь на физических соображениях, чего можно ожидать в отдельных случаях.

Фиг. 23.1. Эквивалентная схема реального сопротивления.

Известно, что ток, протекающий через реальное сопротивле­ние, создает магнитное поле. Значит, каждое реальное сопротив­ление должно обладать и некоторой индуктивностью. Далее, если к сопротивлению приложена некоторая разность потенциа­лов, то на его концах должны возникнуть заряды, создающие нужные электрические поля. При изменении напряжения про­порционально меняется и заряд, так что у сопротивления имеет­ся и какая-то емкость. Следует ожидать, что эквивалентная схе­ма реального сопротивления должна иметь такой вид, как на фиг. 23.1. Если сопротивление хорошее, то его так называемые «паразитические элементы» L и С малы, так что при тех часто­тах, для которых оно предназначено, wL много меньше R, а l/wC — много больше R. Поэтому «паразитическими» элемен­тами можно пренебречь. Когда же частота повышается, то не исключено, что значение этих элементов возрастет и сопротив­ление станет похожим на резонансный контур.

Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iwL. У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фак­тически эквивалентна индуктивности, последовательно соеди­ненной с сопротивлением (фиг. 23.2,а). Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью.

Фиг. 23.2. Эквивалентная схема реальной индуктивности на ма­лых частотах.

Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.

Может быть, надо пользоваться контуром, смахиваю­щим скорее на фиг. 23.2,6, где по­следовательно расставлено несколько маленьких R и L? Однако общий

импеданс такого контура просто равен SR+SiwL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.

Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто меж­ду витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а). Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких ча­стотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для бо­лее высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной мо­дели.

Посмотрим теперь повнимательнее на то, что происходит в реальной катушке. Импеданс индуктивности изменяется как wL, значит, он на низких частотах обращается в нуль — «замы­кается накоротко», и мы замечаем только сопротивление прово­да. Если частота начинает расти, то wL вскоре становится боль­ше R и катушка выглядит почти как идеальная индуктивность. А если подняться по частоте еще выше, то начнут играть роль и емкости. Их импеданс пропорционален 1/wС; он велик на низких частотах. На достаточно низких частотах конденсатор выглядит как «разрыв в цепи», и если его с чем-нибудь запараллелить, то ток через него не пойдет. Но на высоких частотах ток предпочитает течь через емкости между витками, а не через индуктив­ность. Оттого-то ток в катушке прыгает с одного витка на дру­гой, вовсе не помышляя крутить петлю за петлей там, где ему приходится преодолевать э. д. с. Хоть нам, может быть, и хоте­лось бы, чтобы ток шел по виткам катушки, но сам-то он выби­рает путь полегче, переходя на дорогу наименьшего импеданса. Если это было бы нужно, то такой эффект можно было бы назвать «высокочастотным барьером» или чем-нибудь в этом роде. Похожие вещи происходят и в других науках. В аэродина­мике, скажем, если вы захотите заставить что-то двигаться бы­стрее звука, а движение рассчитано на малые скорости, то у вас ничего не выйдет. Это не значит, что возник какой-то непрохо­димый «барьер»; просто надо изменить конструкцию. Точно так же наша катушка, которую первоначально сконструировали как «индуктивность», на очень высоких частотах работает не как индуктивность, а как что-то другое. Для больших частот надо изобретать уже новое устройство.

§ 2. Конденсатор на больших частотах

А теперь обсудим подробнее поведение конденсатора — гео­метрически идеального конденсатора,—когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, по­тому что геометрия пары обкладок много проще геометрии ка­тушки.) Итак, вот конденсатор (фиг. 23.4, а), состоит он из двух параллельных круговых обкладок, соединенных с внешним ге­нератором парой проводов. Если зарядить конденсатор посто­янным током, то на одной из обкладок появится положительный заряд, на другой — отрицательный, а между обкладками будет однородное электрическое поле.

Фиг. 23.4. Электрическое и магнитное поля между обкладками конденсатора.

Представим теперь, что вместо постоянного тока к обкладкам приложено переменное напряжение низкой частоты. (После мы увидим, какая частота «низкая», а какая «высокая».) Конденса­тор, скажем, соединен с низкочастотным генератором. Когда напряжение меняется, то с верхней обкладки положительный заряд убирается и прикладывается отрицательный. В момент, когда это происходит, электрическое поле исчезает, а потом восстанавливается, но уже в обратную сторону. Заряд медленно плещется туда-сюда, и поле поспевает за ним. В каждый момент электрическое поле однородно (фиг. 23.4, б); есть, правда, не­большие краевые эффекты, но мы намерены ими пренебречь. Ве­личину электрического поля можно записать в виде

(23.2)

где Е0— постоянно. Но останется ли это справедливым, когда частота возрастет? Нет, потому что при движении электрического поля вверх и вниз через произвольную петлю Г1 проходит поток электрического поля (фиг. 23.4, а). А, как вам известно, изменяющееся элект­рическое поле создает магнитное. Согласно одному из уравнений Максвелла, при наличии изменяющегося электрического поля (как в нашем случае) обязан существовать и криволинейный ин­теграл от магнитного поля. Интеграл от магнитного поля по замкнутому кругу, умноженный на с2, равен скорости измене­ния во времени электрического потока через поверхность внутри круга (если нет никаких токов):

(23.3)

Итак, сколько же здесь этого магнитного поля? Это узнать не­трудно. Возьмем в качестве петли Г1 круг радиуса r. Из симмет­рии ясно, что магнитное поле идет так, как показано на рисун­ке. Тогда интеграл от В равен 2prВ. А поскольку электрическое поле однородно, то поток его равен просто Е, умноженному на pr2, на площадь круга:

(23.4)

Производная Е по времени в нашем переменном поле равна iwE0eiwt, Значит, в нашем конденсаторе магнитное поле равно

(23.5)

Иными словами, магнитное поле тоже колеблется, а его величи­на пропорциональна w и r.

К какому эффекту это приведет? Когда существует магнит­ное поле, которое меняется, то возникнут наведенные электри­ческие поля, и действие конденсатора станет слегка похоже на индуктивность. По мере роста частоты магнитное поле усилива­ется: оно пропорционально скорости изменения Е, т. е. w. Им­педанс конденсатора больше не будет просто равен 1/iwС.

Будем увеличивать частоту и посмотрим повниматель­нее, что происходит. У нас есть магнитное поле, которое пле­щется то туда, то сюда. Но тогда и электрическое поле не может, как мы раньше предполагали, остаться однородным! Если имеет­ся изменяющееся магнитное поле, то по закону Фарадея должен существовать и контурный интеграл от электрического поля. Так что если существует заметное магнитное поле (а так и бы­вает на высоких частотах), то электрическое поле не может быть на всех расстояниях от центра одинаковым. Оно должно так меняться с r, чтобы криволинейный интеграл от него мог быть равен изменяющемуся потоку магнитного поля.

Посмотрим, сможем ли мы представить себе правильное электрическое поле. Это можно сделать, подсчитав «поправку» к тому, что было на низких частотах,— к однородному полю. Обозначим поле при низких частотах через Е1, и пусть оно по-прежнему равно Е0еiwt, а правильное поле запишем в виде

где E2поправка из-за изменения магнитного поля. При любых w мы будем задавать поле в центре конденсатора в виде E0eiwt(тем самым определяя Е0), так что в центре поправки не будет: E2=0 при r=0.

Чтобы найти Е2, можно использовать интегральную форму закона Фарадея

Интегралы берутся просто, если вычислять их вдоль линии Г2, показанной на фиг. 23.4,б и идущей сперва по оси, затем по радиусу вдоль верхней обкладки до расстояния r, потом вер­тикально вниз на нижнюю обкладку и обратно к оси по радиусу. Контурный интеграл от Е1вдоль этой кривой, конечно, равен нулю; значит, в интеграл дает вклад только Е2, и интеграл равен просто —Ez(r)h, где h — зазор между обкладками. (Мы считаем Е положительным, когда оно направлено вверх.) Это равно скорости изменения потока В, который получится, если вычислить интеграл по заштрихованной площади S внутри Г2 (фиг. 23.4,6). Поток через вертикальную полосу шириной dr равен B(r)hdr, а суммарный поток

Полагая — d/dt от потока равным контурному интегралу от E2, получаем

Фиг. 23.5. Электрическое по­ле между обкладками конден­сатора на высоких частотах. Краевыми аффектами пренебрегли.

Заметьте, что h выпало: поля не зависят от величины зазора между обкладками.

Используя для В(r) формулу (23.5), получаем

Дифференцирование по времени даст нам просто еще один множитель iw:

(23.7)

Как и ожидалось, наведенное поле стремится свести на нет первоначальное электрическое поле. Исправленное поле Е = Е12тогда равно

(23.8)

Электрическое поле в конденсаторе больше уже не однород­но; оно имеет параболическую форму (штриховая линия на фиг. 23.5). Вы видите, что наш простенький конденсатор уже слегка усложняется.

Наши результаты можно использовать для того, чтобы под­считать импеданс конденсатора на больших частотах. Зная электрическое поле, можно подсчитать заряд обкладок и узнать, как ток через конденсатор зависит от частоты оз. Но эта задача нас сейчас не интересует. Нас больше интересует другое: что станется, если частота будет продолжать повышаться, что про­изойдет на еще больших частотах? Но разве мы уже не кончили наш расчет? Нет, потому что раз мы исправили электрическое поле, то, значит, магнитное поле, которое мы раньше подсчи­тали, больше уже не годится. Приближенно магнитное поле (23.5) правильно, но только в первом приближении. Обозначим его В1, а (23.5) перепишем в виде

(23.9)

Вспомните, что это поле появилось от изменения Е1 . А правиль­ное магнитное поле будет создаваться изменением суммарного электрического поля Е12 . Если магнитное поле представить в виде В=В12 , то второе слагаемое — это просто добавочное поле, создаваемое полем Ег. Чтобы узнать В2 , надо повторить все те же рассуждения, которые приводились, когда подсчиты­вали В1: контурный интеграл от B2 вдоль кривой Г1 равен ско­рости изменения потока Е2 через Г1. Опять получится то же уравнение (23.4), но В в нем надо заменить на В2 , а Е — на E2:

Поскольку Е2 с радиусом меняется, то для получения его пото­ка надо интегрировать по круговой поверхности внутри Г1 . Беря в качестве элемента площади 2prdr, напишем этот интеграл в виде

Значит, В2(r) выразится так:

(23.10)

Подставляя сюда Е2(r) из (23.7), получаем интеграл от r3dr, который равен, очевидно, r4/4. Наша поправка к магнитному полю окажется равной

(23.11)

Но мы еще не кончили! Раз магнитное поле В вовсе не такое, как мы сперва думали, то мы, значит, неверно подсчитывали Е2. Надо найти еще поправку к Е, вызываемую добавочным магнит­ным полем В2. Эту добавочную поправку к электрическому по­лю назовем Е3. Она связана с магнитным полем В2 так же, как E2 была связана с В1. Можно опять прибегнуть к тому же самому соотношению (23.6), изменив в нем только индексы:

(23.12)

Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:

(23.13)

Если теперь наше дважды исправленное поле записать в виде Е=Е123, то мы получим

(23.14)

Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значе­ние поля лежит чуть выше кривой (E1+E2).

Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново под­правленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для В3можно использовать (23.10), изменив индексы при В и Е с 2 до 3.

Очередная поправка к электрическому полю равна

С этой степенью точности все электрическое поле дается, стало быть, формулой

где численные коэффициенты написаны в таком виде, что стано­вится ясно, как продолжить ряд.

Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением E0eiwt на бесконечный ряд, который содержит только перемен­ную wr/с. Можно, если мы захотим, определить специальную функцию, обозначив ее через J0(x), как бесконечный ряд в скоб­ках формулы (23.15):

Тогда искомое решение есть произведение E0eiwt на эту функцию при x=wr/c:

(23.17)

Мы обозначили нашу специальную функцию через J0 по­тому, что, естественно, не мы первые с вами занялись задачей колебаний в цилиндре. Функция эта появилась давным-давно, и ее уже привыкли обозначать J0. Она всегда возникает, когда вы решаете задачу о волнах, обладающих цилиндрической сим­метрией. Функция J0 по отношению к цилиндрическим волнам — это то же, что косинус по отношению к прямолинейным волнам. Итак, это очень важная функция. И изобретена она очень давно. Затем с нею связал свое имя математик Бессель. Индекс нуль означает, что Бессель изобрел целую кучу разных функций, а наша — самая первая из них.

Другие функции Бесселя — J1? J2 и т. д.— относятся к цилиндрическим волнам, сила которых меняется при обходе вокруг оси цилиндра.

Полностью скорректированное электрическое поле между обкладками нашего кругового конденсатора, даваемое формулой (23.17), изображено на фиг. 23.5 сплошной линией. Для не очень больших частот нашего второго приближения вполне хватает. Третье приближение было бы еще лучше — настолько хорошо, что если его начертить, то вы бы не заметили разницы между ним и сплошной линией. В следующем параграфе вы уви­дите, однако, что может понадобиться и весь ряд, чтобы получи­лось аккуратное описание поля на больших радиусах или на больших частотах.

§ 3. Резонансная полость

Посмотрим теперь, что даст наше решение для электрическо­го поля между обкладками конденсатора, если продолжать увеличивать частоту все выше и выше. При больших w параметр х=wr/с тоже становится большим, и первые несколько слагае­мых ряда для J0 от х быстро возрастают. Это означает, что па­рабола, которую мы начертили на фиг. 23.5, на больших часто­тах изгибается книзу круче.

В самом деле, она выглядит так, как будто поле на высокой частоте все время старается обратиться в нуль где-то при с/w, примерно равном половине а. Давайте посмотрим, действитель­но ли функция J0 проходит через нуль и становится отрицатель­ной. Сперва испытаем х=2:

Это еще не нуль; но попробуем число побольше, скажем x=2,5. Подстановка дает

В точке x=2,5 функция J0 уже перешла через нуль. Результаты при х=2 и при х=2,5 выглядят так, как будто J0 прошла через нуль на одной пятой пути от 2,5 до 2. Поэтому надо проверить число 2,4:

Фиг. 23.6. Функция Бесселя J0(x).

С точностью до двух знаков после запятой получился нуль. Если рассчитывать точнее (или, поскольку функция J0 извест­на, если разыскать ответ в книжке), то обнаружится, что J0 " проходит через нуль при x=2,405. Мы провели расчет собствен­норучно, чтобы показать вам, что вы тоже способны открывать подобные вещи, а не заимствовать их из книг.

А если уж вы посмотрели про J0 в книжке, то интересно выяс­нить, как она идет при больших значениях х; она напоми­нает кривую на фиг. 23.6. Когда х возрастает, J0(x) колеблется от положительных значений к отрицательным и обратно, по­степенно уменьшая размах колебаний.

Мы получили интересный результат: если достаточно увели­чить частоту, то электрические поля в центре конденсатора и у его края могут быть направлены в противоположные стороны. Например, пусть w так велико, что x=wr/с на внешнем краю кон­денсатора равно 4; тогда на фиг. 23.6 краю конденсатора отве­чает абсцисса x=4. Это означает, что наш конденсатор работает при частоте w=4с/а. И на краю обкладок электрическое поле будет довольно велико, но направлено не туда, куда можно было ожидать, а в обратную сторону. Эта ужасная вещь может про­изойти с конденсатором на больших частотах. При переходе к очень большим частотам электрическое поле по мере удаления от центра конденсатора много раз меняет свое направление. Кроме того, имеется еще связанное с этими электрическими по­лями магнитное поле. Не удивительно, что наш конденсатор при высоких частотах уже не напоминает идеальной емко­сти. Можно даже задуматься над тем, на что похож он силь­нее: на емкость или на индуктивность. Надо к тому же под­черкнуть, что на краях конденсатора происходят и более сложные эффекты, которыми мы пренебрегли. Например, там проис­ходит еще излучение волн за края конденсатора, так что настоя­щие поля куда сложнее тех, которые мы рассчитали. Впрочем, мы не будем сейчас заниматься этими эффектами.

Можно было бы, конечно, попробовать представить себе для конденсатора эквивалентную цепь, но, вероятно, будет лучше, если мы просто примем, что тот конденсатор, который мы сконструировали для низко­частотных полей, больше не го­дится, когда частоты слишком велики.

Фиг. 23.7. Электрическое и магнит­ное поля в закрытой цилиндрической банке.

И если мы хотим изу­чить, как действует такой объект на высоких частотах, нам нужно оставить те приближения к уравнениям Максвелла, которые мы делали, изучая цепи, и вер­нуться к полной системе уравне­ний, полностью описывающей поля в пространстве. Вместо того чтобы манипулировать о идеализированными элементами цепи, надо оперировать с реаль­ными проводниками, с такими, какие они есть на самом деле, учитывая все поля в пространстве между ними. Например, если нам нужен резонансный контур на высокие частоты, то не нужно пытаться его сконструировать с помощью одной катушки и плоского конденсатора.

Мы уже упомянули, что плоский конденсатор, который мы рассматривали, похож, с одной стороны, на емкость, а с другой— на индуктивность. От электрического поля возникают заряды на поверхностях обкладок, а от магнитного — обратные э.д.с. Не может ли оказаться, что перед нами уже готовый резонанс­ный контур? Оказывается, да. Представьте, что мы выбрали такую частоту, при которой картина электрического поля падает до нуля на каком-то расстоянии от края диска; иначе говоря, мы выбрали wa/с большим, чем 2,405. Всюду на окружности, центр которой лежит на оси обкладок, электрическое поле об­ратится в нуль. Возьмем кусок жести и вырежем полоску такой ширины, чтобы она как раз поместилась между плоскими обкладками конденсатора. Затем изогнем ее в форме цилиндра та­кого радиуса, на котором электрическое поле равно нулю. Раз там нет электрического поля, то по вставленному в конден­сатор цилиндру никаких токов не потечет, и ни электрические, ни магнитные поля не изменятся. Мы, стало быть, смогли закоротить друг на друга обкладки конденсатора, ничего не из­менив в нем. И посмотрите, что получилось: вышла настоящая цилиндрическая банка с электрическим и магнитным полями внутри, причем никак не связанная с внешним миром. Поля внутри не изменятся, даже если отрезать выступающие края обкладок и провода, ведущие к конденсатору. Останется только закрытая банка с электрическим и магнитным полями внутри нее (фиг. 23.7,а). Электрические поля колеблются то вперед, то назад с частотой w, которая, не забывайте, определила собою диаметр банки. Амплитуда колеблющегося поля Е меняется с расстоянием от оси банки так, как показано на фиг. 23.7,6. Кривая эта — просто первая дуга функции Бесселя нулевого порядка. В банке есть еще и круговое магнитное поле, которое колеблется во времени со сдвигом по фазе на 90° относительно электрического поля.

Магнитное поле можно тоже разложить в ряд и изобразить на графике, как это сделано на фиг. 23.7,е.

Но как же это получается, что внутри банки могут существо­вать электрические и магнитные поля, не соединенные с внешним миром? Оттого, что электрическое и магнитное поля сами себя поддерживают: изменение Е создает В, а изменение В создает Е,— все в согласии с уравнениями Максвелла. Магнитное поле ответственно за индуктивность, электрическое — за емкость; вместе они создают нечто, похожее на резонансный контур. За­метьте, что описанные нами условия возникают лишь тогда, когда радиус банки в точности равен 2,405 с/w. В банке задан­ного радиуса колеблющиеся электрическое и магнитное поля бу­дут поддерживать друг друга (описанным способом) лишь при этой определенной частоте. Итак, цилиндрическая банка радиу­са r резонирует при частоте

(23.18)

Мы сказали, что если банка совершенно закрыта, то поля продолжают колебаться так же, как и раньше. Это не совсем так. Это было бы так, если бы стенки банки были идеальными проводниками. В реальной банке, однако, колеблющиеся токи, текущие по стенкам, могут из-за сопротивления материала те­рять энергию. Колебания полей постепенно замрут. Из фиг. 23.7 ясно, что там должны существовать сильные токи, связанные с электрическими и магнитными полями внутри полости. Из-за того, что вертикальное электрическое поле внезапно исчезает на верхнем и нижнем торцах банки, у него возникает там силь­ная дивергенция; значит, на внутренней поверхности банки должны появляться положительные и отрицательные заряды (фиг. 23.7, а). Когда электрическое поле меняет направление на обратное, должны менять знак и заряды, так что между верхним и нижним торцами банки должен течь переменный ток.

Фиг. 23.8. Подключение резонансной полости.

Он будет течь по боковой поверхности банки, как показано на рисунке. То, что по бокам банки должны течь токи, можно понять ещё, рассмотрев то, что происходит в магнитном поле. Кривая на фиг. 23.7, в сообщает нам, что магнитное поле на краю банки внезапно обращается в нуль. Такое внезапное изменение маг­нитного поля может произойти лишь оттого, что по стенке течет ток. Этот ток как раз и создает переменные электрические заря­ды на верхней и нижней обкладках банки.

Вас может удивить наше открытие — обнаружение токов на боковых сторонах банки. А как же с нашим прежним утвержде­нием, что ничего не изменится, если в области, где электриче­ское поле равно нулю, поставить эти боковые стенки? Вспомни­те, однако, что, когда мы впервые вставляли в конденсатор эти боковые стенки, верхняя и нижняя обкладки выступали за них, так что магнитные поля оказывались и снаружи нашей банки. И только когда мы отрезали выступающие за края банки части конденсатора, на внутренней части боковых стенок появи­лись какие-то токи.

Хоть электрические и магнитные поля в абсолютно закры­той банке из-за потерь энергии постепенно исчезнут, можно сделать так, чтобы этого не было. Для этого надо провертеть в банке сбоку дырочку и понемножку подбавлять энергию, чтобы возмещать потери. Надо взять проволочку, просунуть ее через дырочку в банке и припаять ее к внутренней части стенки, чтобы получилась петля (фиг. 23.8). Если подсоединить эту проволоч­ку к источнику высокочастотного переменного тока, то этот ток будет снабжать энергией электрическое и магнитное поля по­лости и поддерживать колебания. Это произойдет, конечно, лишь в том случае, если частота источника энергии совпадет с резонансной частотой банки.

Фиг. 23.9. Устройство для наблюдения резонанса в полости.

Фиг. 23.10. Кривая отклика, на частоту для резонансной полости.

Если частота у источника не та, то электрические и магнитные поля резонировать не будут и поля в банке окажутся слабенькими.

Резонансное поведение легко наблюдать, если в банке про­делать другую дырку и продеть в нее другую петлю (фиг. 23.8). Изменяющееся магнитное поле, проходящее через эту вто­рую петлю, будет генерировать в ней э. д. с. индукции. Если теперь эту петлю соединить с внешним измерительным контуром, то токи в нем будут пропорциональными напряженно­сти полей в полости. Представьте теперь, что входная петля на­шей полости соединена с радиочастотным сигнал-генератором (фиг. 23.9). Сигнал-генератор состоит из источника перемен­ного тока, частоту которого можно менять, поворачивая ручку на панели генератора. Соединим затем выходную петлю полости с «детектором» — прибором, измеряющим ток от выходной пет­ли. Отсчеты на его шкале пропорциональны этому току. Если затем измерить ток на выходе как функцию частоты сигнал-ге­нератора, то получится кривая, похожая на изображенную на фиг. 23.10. Ток на выходе невелик на всех частотах, кроме тех, которые близки к w0— резонансной частоте полости. Резонанс­ная кривая очень похожа на ту, о которой говорилось в гл. 23 (вып. 2). Однако ширина резонанса меньше, нежели обычно по­лучается в резонансных контурах, составленных из индуктивностей и емкостей; иначе говоря, Q (добротность) полости очень высока. Зачастую встречаются даже Q порядка 100 000 и выше, особенно если внутренние стенки полости сделаны из очень хорошо проводящего материала, например из серебра.

§ 4. Собственные колебания полости

Предположим, что мы пытаемся проверить свою теорию и де­лаем измерения с настоящей банкой. Мы берем банку в форме цилиндра диаметром 7,5 см и высотой около 6,3 см. К ней при­делываются входная и выходная петли (см. фиг. 23.8). Если рассчитать ожидаемую для этой банки резонансную частоту по формуле (23.18), то получится f0=w0/2p=3010 Мгц. Мы берем сигнал-генератор с частотой около 3000 Мгц и начинаем слегка ее варьировать, пока не появляется резонанс; мы замечаем, что наибольший ток на выходе возникает, скажем, при частоте 3050 Мгц. Это очень близко к предсказанной резонансной час­тоте, но до конца не совпадает. Можно привести несколько мыс­лимых причин расхождения. Может быть, резонансная частота немного изменилась, потому что мы прорезали несколько дырок, чтобы вставить соединительные петли. Но это вряд ли: дырки должны были бы слегка понизить резонансную частоту, так что причина не в этом. Тогда, может быть, в калибровке частоты сигнал-генератора допущена небольшая ошибка или измерения диаметра полости недостаточно точны. Во всяком случае, согла­сие довольно хорошее.

Но гораздо важнее то, что произойдет, когда частота нашего сигнал-генератора уже значительно удалится от 3000 Мгц. Тогда мы получим такой результат, как на фиг. 23.11. Если на­чать сильнее менять частоту, то получится, что, кроме ожидавшегося резонанса близ 3000 Мгц, имеется еще другой резонанс возле 3300 Мгц и третий возле 3820 Мгц. Что означают эти до­бавочные резонансы? Разгадку дает фиг. 23.6. Там мы предполо­жили, что на край банки приходится первый нуль функции Бес­селя. Но ведь не исключено, что краю банки отвечает второй нуль функции Бесселя, так что в промежутке от центра банки до ее края происходит одно полное колебание электрического поля (фиг. 23.12, а). Такой тип колебаний полей вполне допустим, и естественно ожидать, что банка начнет резонировать на такой частоте. Но заметьте: второй нуль функции Бесселя наблюдает­ся при x=5,52 (фиг. 23.12,6), т. е. более чем вдвое дальше, чем первый нуль. Значит, резонансная частота колебаний этого типа превышала бы 6000 Мгц. Ее, без сомнения, можно заметить, но это не объясняет нам резонанса при 3300 Мгц.

Все дело в том, что в своем анализе поведения резонансной полости мы рассмотрели лишь одно возможное геометрическое расположение электрических и магнитных полей. Мы считали,

Фиг. 23.11. Наблюдаемые резонансные частоты цилиндрической полости.

Фиг. 23.12. Более высокочастотный тип колебаний.

что электрическое поле верти­кально, а магнитное расположено горизонтальными кругами. Но мыслимы и другие поля. От них требуется лишь, чтобы они удовле­творяли уравнениям Максвелла и чтобы электрическое поле входило в стенки под прямым углом к ним. Мы взяли случай, когда верх и низ банки плоские, но все не очень бы изменилось, если бы верх и низ были изогнутыми. Да и вообще, от­куда банке «знать», где у нее верх,

где низ, а где бока? И действительно, можно доказать, что суще­ствует такой тип колебаний полей внутри банки, при котором электрическое поле идет более или менее вдоль ее диаметра (фиг. 23.13).

И не так уж трудно понять, почему собственная частота ко­лебаний этого типа не будет сильно отличаться от собственной частоты первого рассмотренного нами типа колебаний. Пред­ставьте, что вместо цилиндрической полости мы взяли бы полость в виде куба со стороной 7,5 см. Ясно, что у нее будет три разных типа колебаний, но с одной и той же частотой. Тип колебаний, при котором электрическое поле направлено примерно верти­кально, будет иметь ту же частоту, что и тип колебаний, при ко­тором электрическое поле направлено вправо и влево. Если те­перь этот куб переделать в цилиндр, то частоты как-то изменятся. Но все же можно ожидать, что изменение не будет большим, если размеры полости изменятся очень мало.

Фиг. 23.13. Поперечный тип колебаний цилиндрической поло­сти.

Фиг. 23.14. Еще один тип коле­баний цилиндрической полости.

Значит, частота того типа колебаний, что на фиг. 23.13, не должна сильно отличаться от частоты на фиг. 23.8. Можно было бы подробно рассчи­тать собственную частоту того типа колебаний, который показан на фиг. 23.13, но мы этого сейчас делать не будем. Если бы вы­числения были проделаны, мы обнаружили бы, что при предпо­ложенных размерах резонансная частота получается совсем близко от наблюденного резонанса при 3300 Мгц. С помощью подобных расчетов можно показать, что должен существовать еще другой тип колебаний при другой замеченной нами ре­зонансной частоте — 3800 Мгц. Электрические и магнитные поля, характерные для этого типа колебаний, показаны на фиг. 23.14. Электрическое поле здесь больше не пытается тя­нуться через всю полость. Оно направлено от боков к торцам.

Теперь, надеюсь, вы уже поверите мне, что при дальнейшем повышении частоты следует ожидать появления все новых и но­вых резонансов. Существует множество различных типов коле­баний; у каждого из них своя частота, отвечающая какому-то частному расположению электрических и магнитных полей. Каждое такое расположение полей называют собственным колебанием (или модой). Резонансную частоту каждого типа колеба­ний можно подсчитать, найдя из уравнений Максвелла электри­ческие и магнитные поля в полости.

Как можно узнать, наблюдая резонанс при некоторой опре­деленной частоте, что за тип колебаний при этом возбуждается? Один способ такой: надо в полость через отверстие просунуть проволочку.

Фиг. 23.15. Небольшая проволочка, введенная в полость, если она парал­лельна к Е, сильней исказит ревонанс, чем та, которая расположена поперек Е.

Если электрическое поле направлено вдоль проволочки (фиг. 23.15, а), в ней возникнут сравнительно сильные то­ки. Они начнут сильно сосать энергию из полей, и резонанс бу­дет подавлен. Если же электрическое поле будет такое, как на фиг. 23.15,6, то проволочка создаст гораздо меньший эффект. В какую сторону в этом месте направлено поле при этом типе ко­лебаний, можно узнать, согнув проволочку так, как показано на фиг. 23.15,в. Поворачивая проволочку, вы увидите, что она сильно изменяет силу резонанса, когда ее конец параллелен Е, и мало влияет на резонанс, если он повернут поперек Е.

§ 5. Полости и резонансные контуры

Хотя описанная нами резонансная полость с виду очень не­похожа на обычный, состоящий из катушки и конденсатора резонансный контур, однако обе резонансные системы тесно между собой связаны. Обе они — члены одной семьи; это всего лишь два крайних примера электромагнитных резонаторов, и между ними можно поместить немало промежуточных стадий. Начнем, скажем, с того, что подключим конденсатор в параллель с индуктивностью и образуем резонансный контур (фиг. 23.16, а). Этот контур будет резонировать на частоту w0=ЦLC. Если мы захотим поднять частоту в этом контуре, то этого можно дос­тичь, понизив индуктивность L, например уменьшив число вит­ков в катушке. Но далеко на таком пути мы не уйдем. Мы дой­дем до последнего витка и тогда останется просто кусок провода, соединяющий верх и низ конденсатора. Можно было бы продол­жать повышать резонансную частоту, уменьшая емкость; однако можно и дальше уменьшать индуктивность, запараллеливая рядом несколько индуктивностей. Две одновитковые индук­тивности, включенные в параллель друг у друга, приведут к половине индуктивности одного витка. Так что, даже доведя катушку до одного витка, можно продолжать повышать резо­нансную частоту, добавляя отдельные петли, соединяющие верхнюю обкладку конденсатора с нижней. На фиг. 23.16, б показаны обкладки конденсатора, соединенные шестью подоб­ными «одновитковыми индуктивностями». Продолжая прибав­лять новые куски провода, мы постепенно перейдем к совершен­но замкнутой резонансной системе. Такая система (вернее, ее осевое сечение) показана на фиг. 23.16,в. Теперь индуктивность— это пустотелый цилиндр, припаянный к краям обкладок конденсатора. Электрические и магнитные поля будут иметь направление, показанное на рисунке. Такой предмет — это, в сущности, уже резонансная полость. Ее называют «нагружен­ной» полостью. Но можно ее также все еще рассматривать как L—С-контур, в котором емкостная часть — область, где находится большая часть электрического поля, а индуктивная — где помещается большая часть магнитного поля.

Фиг. 23.16. Резонаторы с возрастающей резонансной частотой.

Если мы захотим повысить частоту резонатора на фиг. 23.16,в сильнее, то надо еще уменьшить индуктивность L. Чтобы этого добиться, следует уменьшить геометрические размеры индук­тивной секции, скажем, уменьшить на чертеже высоту h. При уменьшении h резонансная частота растет. И в конце концов можно, конечно, дойти до такого положения, при котором высота h сравняется с промежутком между обкладками. Получится обычная цилиндрическая банка; наш резонансный контур пре­вратится в полый резонатор, показанный на фиг. 23.7.

Заметьте теперь, что в первоначальном резонансном L—С-контуре (фиг. 23.16) электрические и магнитные поля были со­вершенно разделены. Когда мы постепенно видоизменяли резо­нансную систему, все повышая ее частоту, то магнитное поле теснее и теснее сближалось с электрическим, пока в полом резонаторе окончательно не перемешалось с ним.

Хотя все полые резонаторы, о кото­рых в этой главе говорилось, были ци­линдрическими, ничего волшебного в самой цилиндрической форме нет. Банка любого вида все равно будет обладать резонансными частотами, отвечающими различным допустимым типам колеба­ний электрических и магнитных полей. К примеру, у «полости» на фиг. 23.17 будет своя личная совокупность резонансных частот, хотя их и трудно рас­считать.

Фиг, 23.17. Еще одна резонансная полость.