Фемтосекунды

Фемтосекунды

Ну что ж, переходим дальше, к фемтосекундам. Фемтосекунда (фс) — это 10–15 секунды. Фемтосекундный диапазон — еще более мелкий по времени диапазон. Атомы здесь практически не движутся. Только, может быть, на сотнях фемтосекунд еще можно заметить какое-нибудь смещение атомов в кристаллической решетке, но на десятках единиц фемтосекунд атомы уже можно считать просто неподвижными, и это уже область, в которой господствуют электроны, разнообразные электронные явления. Но электроны, на самом деле, тоже движутся с разными частотам, с разными скоростями. То есть внешние электроны движутся медленнее, внутренние атомные электроны движутся быстрее. Но под словом «движутся» я, конечно, не имею ввиду, что они прямо крутятся вокруг атома, но если запустить какой-то нестационарный процесс — например, возмутить как-то атом или выбить у него электрон, — то у вас начинается какое-то перетекание волновых функций. Вот это перетекание волновых функций у вас тоже происходит на фемтосекундном масштабе.

Здесь есть стандартные методы исследования, то есть это фактически та же самая методика накачки и зондирования, о которой я говорил, только она уже в 80-е годы эволюционировала вплоть до единиц фемтосекунд. Ну и здесь она, конечно, столкнулась с определенным и неизбежным пределом. Просто период колебания электромагнитного поля обычной световой волны составляет от 1,5 до 3 фемтосекунд. То есть получить, скажем, 1 фемтосекунду просто нереально, потому что вы не можете получить световой импульс с половиной периода колебания — у вас неизбежно хотя бы 1–2 колебания есть. Поэтому оптические импульсы у вас неизбежно получаются длительностью несколько фемтосекунд. Но с помощью этих методов можно действительно изучать фемтосекундные процессы.

Вместо того чтобы показывать это, я решил, что полезно будет рассказать пример, ну, несколько иного взгляда на быстро протекающие процессы, то есть несколько иного метода детектирования этих явлений. Прежде чем я переключу на следующий слайд, я вам просто скажу словами.

Значит, если у вас есть быстропротекающий процесс, в котором переносятся заряды, например электроны, протоны, то, значит, у вас может возникать электромагнитное излучение, причем частота этого электромагнитного излучения как раз соответствует тем типичным временам переходов, которые у вас в этом процессе и имеются. Поэтому, если внимательно посмотреть на этот процесс и зарегистрировать от него вспышку электромагнитного излучения, то можно, расшифровав эту вспышку, кое-что узнать и про сам процесс. И вот здесь рассказывается о том, как буквально год назад это было применено к интересному биологическому белку под названием бактериородопсин.

Бактериородопсин — это вообще уникальный белок, у него много интересных физических свойств есть. Ну, реально в природе он вырабатывается определенным типом бактерий, и причем он встроен в их мембрану, то есть он сидит в мембране, и делает он следующую функцию. Это светочувствительный белок: когда его освещают светом, в нём запускается цикл, то есть каскад процессов, перестройки, разнообразные переконфигурации этого белка, результатом которого является передача протона от одного конца молекулы к другому. Ну и поскольку у нас этот белок встроен в мембрану, получается, что при освещении этот белок работает как протонный насос. То есть он из одной части, из одной области прокачивает протоны в другую область и там их отпускает, снова берет протон, перекачивает в другую и отпускает.

Конечно, это очень важно для биологии, это один из фундаментальных процессов в биологии. Поэтому, конечно, физики и, там, биофизики это активно всё изучали. Вот выяснилось, что есть много разных стадий, здесь примерно нарисовано, я не расшифровываю, что это такое, просто типичные стадии, типичные времена, в течение которых эти стадии все проходятся. И оказалось, что в этом белке, на самом деле, есть стадии с совершенно разным временным масштабом. То есть вообще весь цикл проходит примерно за 20–30 миллисекунд, то есть достаточно медленно. Но определенные этапы проходят за микросекунды, а некоторые шаги в этих этапах проходят даже за наносекунды и даже за пикосекунды, то есть есть целый диапазон в 12 порядков разнообразных переходов в этой молекуле. Ну и оказалось, что самые-самые первые явления, то есть самый первый отклик этой молекулы на свет, когда только-только ее осветили, вот он протекает буквально за считанные пикосекунды, за 1–2 пикосекунды. И для того чтобы разобраться в динамике этого процесса, требуется методика, которая позволяет зайти глубже, чем пикосекундный диапазон, тр есть в фемтосекундный диапазон, хотя бы сотни или десятки фемтосекунд желательно разглядеть с помощью этой методики.

Вот, ну, как я уже говорил, идея, которая здесь была применена, — очень простая. Если у вас есть перемещение зарядов, а в этой молекуле есть, естественно, перемещение зарядов, то у вас может возникать излучение. Вопрос: какого оно диапазона? Значит, если речь идет про пикосекундный диапазон времен, то одной пикосекунде, если пересчитать это в частоту, отвечает 1012 Гц, то есть это первое герцовое излучение. Ну, как мы слышали, на языке астрономов это называется дальний инфракрасный диапазон. То есть длина волны сотни микрон. Ну и вообще это очень тяжелый для изучения диапазон, как в астрофизике, так и, в принципе, в обычной физике. Вот, то есть в течение долгого времени не было не только надежных методов детектирования слабых терагерцовых импульсов, даже надежных методов генерации слабых терагерцовых импульсов. Поэтому прогресса большого не было. Вот буквально последние 5-10 лет наметилось несколько новых концепций, с помощью которых можно излучать эти терагерцовые волны и детектировать их тоже. То есть сейчас большой проблемы это не представляет.

Итак, если у нас тут будут процессы с типичным временем порядка пикосекунд или долей пикосекунд — то есть это значит, что будет производиться вспышка терагерцового излучения, — вот если эту вспышку задетектировать и промерить, то можно узнать многое... и сравнить с теоретическими расчетами — можно узнать много про динамику перемещения зарядов в этой молекуле. Ну, конечно, нереально от одной молекулы увидеть вспышку терагерцового излучения, особенно с учетом того, что оно плохо детектируется, поэтому здесь на помощь пришел тот факт, что эти молекулы можно концентрировать и выстраивать их примерно, ну, в одном направлении. И поэтому когда у вас есть вспышка света, которая инициирует процессы, то она сразу инициирует процессы в этих тысячах, миллионах молекул. И они все начинают излучать терагерцовое излучение, причем излучение это идет когерентно, то есть сразу со всей пленочки. И вот этот импульс уже можно задетектировать.

Вот картинка этого импульса, который получен в эксперименте. Здесь у нас пикосекунды, здесь, ну, электрическое поле в терагерцовом импульсе, вот эти зелененькие — это точки экспериментальные, видите с какой плотностью они стоят, то есть у нас на каждую пикосекунду приходится, ну, пара десятков этих точечек. И это необходимо, потому что иначе такую быструю динамику просто было бы не заметить. Вот. На эти точки здесь наложено несколько кривых. Что это за кривые — не сильно важно, просто видно, что разные теоретические подходы к описанию отклика этой молекулы, скажем, с учетом переноса электронов или протонов или того и другого вместе дают немножко разные предсказания, и самые лучшие предсказания дает кривая, которая учитывает, скажем, перенос и электронов и протонов. То есть это может показаться каким-то мелким вопросом, но я хочу, чтобы вы обратили внимание на саму методику. То есть с помощью внимательного изучения этого профиля и сравнения с теорией мы можем действительно много что узнать про субпикосекундные явления, то есть про явления, длящиеся сотни фемтосекунд. Вот ссылка на эту статью.