Зептосекунды

Зептосекунды

И на этом спектр тоже не кончается, диапазон времен. Есть еще более мелкие процессы, более быстрые процессы, которые протекают на еще более мелких единицах времени. Эти единицы времени называются зептосекунды, 1 зс это 10–21 секунды. На зептосекундном масштабе уже, конечно, нет никаких движений ни атомов, ни даже электронов. И электроны, и атомы стоят. Всё, что может происходить на этом масштабе, — это ядерные реакции. То есть мы уже залезли вглубь ядра.

Значит, можно оценить типичное время, за которое нуклон, двигающийся с типичной ядерной кинетической энергией, проходит диаметр ядра. Это оказывается порядка 1 зептосекунды. Это дает нам примерную оценку того, сколько протекают ядерные реакции, если, скажем, у вас родилось какое-то ядро в столкновении и тут же распалось. Если оно не сдерживается никакими силами, то оно распадается примерно за зептосекунду. Если же у вас есть какие-то дополнительные силы или стимулы для этого ядра немножко пожить, то есть чуть-чуть быть постабильнее, то его время жизни будет по крайней мере на несколько порядков больше, чем зептосекунды.

Вот, оказывается, это можно изучать, и это действительно было недавно использовано, буквально в прошлом году, для обнаружения того, что некоторые изотопы элементов 120 и 124 обладают повышенной стабильностью. (Подробнее см. в новости У изотопов 120-го и 124-го химических элементов обнаружена склонность к долгожительству, «Элементы», 15.08.2008.) Конечно, это не настоящие стабильные атомы, здесь вообще о стабильности говорить не приходится, они жили всего лишь 1–2 аттосекунды, но интерес к ним связан с тем, что эти изотопы, на самом деле, очень нейтроно-дефицитны. Совершенно гарантированно, что у них есть собратья, другие изотопы, с большим количеством нейтронов, которые будут жить намного дольше. Их просто очень тяжело экспериментально получить, поэтому люди сейчас экспериментируют только вот с нейтроно-дефицитными изотопами. Вот. Но получив кое-какие экспериментальные данные даже про эти нейтроно-дефицитные изотопы и сравнив их с теоретическими расчетами, можно действительно улучшить предсказания теоретиков относительно острова стабильности, который, может быть, существует в сверхтрансурановых элементах.

Значит, как это всё можно исследовать. Казалось бы, вообще удивительная вещь: и даже свет, можно считать, стоит, электроны стоят, и атомы стоят. И тем не менее можно это тоже исследовать.

Значит, метод, который здесь используется, называется «методом теней». И выглядит он так. Значит, смотрите, у вас есть кристалл, в котором сидят в кристаллических плоскостях ядра. Вот у вас налетает на эту мишень какое-то другое ядро, сталкивается с этим ядром и на какое-то небольшое время порождает метастабильное и очень тяжелое ядро. Но поскольку закон сохранения импульса соблюдается, это ядро движется по-прежнему вперед с некоторой скоростью. И затем оно распадается. И вот в зависимости от того, где именно оно распадается, картина получается сильно разная. Если оно распадается между кристаллографическими плоскостями, то есть в достаточном удалении от своей исходной плоскости, то дочерние частицы, в принципе, могут вылетать прямо вперед, им ничто не мешает. Если мы будем смотреть на распределение по углу этих дочерних частиц, то мы будем видеть довольно большое количество частиц, которые улетают прямо вперед, то есть вдоль кристаллографической плоскости. А если у вас это ядро распалось практически тут же, на месте, совсем-совсем недалеко отойдя от этой кристаллографической плоскости, то вы не сможете увидеть никакие частицы, которые вылетают вперед, просто потому, что мешает кристаллографическая плоскость. Либо эти частицы перерассеются, либо поглотятся, либо отклонятся электрическим полем на большой угол.

То есть, если вы построите теперь такой график — это количество дочерних частиц в зависимости от угла отклонения от кристаллографической плоскости, — вы увидите настоящую тень от кристаллографической плоскости. Но только эта тень, конечно, не в оптическом диапазоне, не в лучах — эта тень в распределении дочерних ядер, получившихся в этой реакции. Вот. И с помощью этой методики действительно можно вполне надежно отличать ядра, которые живут, скажем, одну аттосекунду или 100 зептосекунд. И с помощью этой методики действительно было показано, что эти элементы — некоторые из этих изотопов — живут достаточно долго.