Глава 24 ПЕРЕХОДНЫЕ РЕШЕНИЯ
Глава 24
ПЕРЕХОДНЫЕ РЕШЕНИЯ
§ 1. Энергия осциллятора
§ 2. Затухающие колебания
§ 3. Переходные колебания в электрических цепях
§ 1. Энергия осциллятора
Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцилляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колебаний. Давайте займемся ею.
Чему равна кинетическая энергия осциллятора? Она пропорциональна квадрату скорости. Здесь мы затронули важный вопрос. Предположим, что мы изучаем свойства некоторой величины А; это может быть скорость или еще что-нибудь. Мы обратились к помощи комплексных чисел: A==Вехр(iwt), но в физике праведна и чтима только действительная часть комплексного числа. Поэтому если вам для чего-нибудь понадобится получить квадрат А, то не возводите в квадрат комплексное число, чтобы потом выделить его действительную часть.
Действительная часть квадрата комплексного числа не равна квадрату действительной части, она содержит еще и мнимую часть первоначального числа. Таким образом, если мы захотим найти энергию и посмотреть на ее превращения, нам придется на время забыть о комплексных числах.
Итак, истинно физическая величина А — это действительная часть A0exp[i(wt+D)], т. е.
A=A0соs(wt+D), а комплексное число А — это j4oexp(iD). Квадрат этой физической величины равен A20cos2(wt+D). Он изменяется от нуля до максимума, как это предписывается квадратом косинуса. Максимальное значение квадрата косинуса равно 1, минимальное равно 0, а его среднее значение — это 1/2.
Зачастую нас совсем не интересует энергия в каждый данный момент колебания; во многих случаях достаточно знать лишь среднюю величину A2 (среднее значение квадрата А в течение времени, много большего, чем период колебаний). При этих условиях можно усреднить квадрат косинуса и доказать теорему: если А представляется комплексным числом, то среднее значение А2 равно 1/2A20. Здесь А20 — это квадрат модуля комплексного числа А. (Квадрат модуля В записывают по-разному;
|В |2 или ВВ *— в виде произведения числа В на комплексно сопряженное.) Эта теорема пригодится нам еще много раз.
Итак, речь идет об энергии осциллятора, на который действует внешняя сила. Движение такого осциллятора описывается уравнением
Мы, конечно, предполагаем, что F(t) пропорциональна coswt. Выясним теперь, много ли приходится этой силе работать. Работа, произведенная силой в 1 сек, т. е. мощность, равна произведению силы на скорость. [Мы знаем, что работа, совершаемая за время dt, равна Fdx, а мощность равна F(dx/dt).] Значит,
Как легко проверить простым дифференцированием, первые два члена можно переписать в виде (d/dt)][l/2m(dx/dt)2+1/2mw2x2]. Выражение в квадратных скобках — производная по времени суммы двух членов. Это понятно; ведь первый член суммы — кинетическая энергия движения, а второй — потенциальная энергия пружины. Назовем эту величину запасенной энергией, т. е. энергией, накопленной при колебаниях. Давайте усредним мощность по многим циклам, когда сила включена уже давно и осциллятор изрядно наколебался. Если пробег длится долго, запасенная энергия не изменяется; производная по времени дает эффект, в среднем равный нулю. Иными словами, если усреднить затраченную за долгое время мощность, то вся энергия поглотится из-за сопротивления, описываемого членом gm(dx/dt)2. Определенную часть энергии осциллятор, конечно, запасет, но если усреднять по многим циклам, то количество ее не будет меняться со временем. Таким
образом, средняя мощность <P> равна
Применяя метод комплексных чисел и нашу теорему о том, что <А2>=1/2A20, легко найти эту среднюю мощность. Так как
<P>=1/2gw2x20. (24.4)
Если перейти к электрическим цепям, то dx/dt надо заменить на ток I (I — это dq/dt, где q соответствует х), а gm — на сопротивление R. Значит, скорость потери энергии (мощности силы) в электрической цепи равна произведению сопротивления на средний квадрат силы тока
<Р>=R<I2>=Rl/2I20. (24.5)
Энергия, естественно, переходит в тепло, выделяемое сопротивлением; это так называемые тепловые потери, или джоулево тепло.
Интересно разобраться также в том, много ли энергии может накопить осциллятор. Не путайте этого вопроса с вопросом о средней мощности, ибо хотя выделяемая силой мощность сначала действительно накапливается осциллятором, потом на его долю остается лишь то, что не поглотило трение. В каждый момент осциллятор обладает вполне определенной энергией, поэтому можно вычислить среднюю запасенную энергию <E>. Мы уже вычислили среднее значение (dx/dt)2, так что
Если осциллятор достаточно добротен и частота w близка к w0, то ЅхЅ — большая величина, запасенная энергия очень велика и можно накопить очень много энергии за счет небольшой силы. Сила производит большую работу, заставляя осциллятор раскачиваться, но после того, как установилось равновесие, вся сила уходит на борьбу с трением. Осциллятор располагает большой энергией, если трение очень мало, и потери энергии невелики даже при очень большом размахе колебаний. Добротность осциллятора можно измерять величиной запасенной энергии по сравнению с работой, совершенной силой за период колебания.
Что это за величина — накопленная энергия по сравнению с работой силы за цикл? Ее обозначили буквой Q. Величина Q — это умноженное на 2pотношение средней запасенной энергии к работе силы за один цикл (можно рассматривать работу не за цикл, а за радиан, тогда в определении Q исчезнет 2p)
Пока Q не слишком велика — это плохая характеристика системы, если же Q довольно большая величина, то можно сказать, что это мера добротности осциллятора. Многие пытались дать самое простое и полезное определение Q; разные определения немногим отличаются друг от друга, но если Q очень велика, то все они согласуются друг с другом. При самом общем определении по формуле (24.7) Q зависит от w. Если мы имеем дело с хорошим осциллятором вблизи резонансной частоты, то (24.7) можно упростить, положив w = w0, тогда Q=w0/g, такое определение Q было дано в предыдущей главе. Что такое Q для электрической цепи? Чтобы найти эту величину, надо заменить mна L, mg на R и mw20на 1/С(см. табл. 23.1). Тогда q в точке резонанса равна Lw/R, где w — резонансная частота. В цепи с большой Q запасенная цепью энергия велика по сравнению с работой за один цикл, производимой поддерживающей колебания в цепи машиной.
§ 2. Затухающие колебания
Вернемся к основной теме — переходным решениям. Переходными решениями называются решения дифференциального уравнения, соответствующие ситуации, когда внешняя сила не действует, но система тем не менее не находится в покое. (Конечно, лучше всего решать задачу, когда сила не действует, а система покоится, покоится — ну и пусть покоится!) Соответствующие переходным решениям колебания можно вызвать так: заставить силу поработать, а потом выключить ее. Что тогда случится с осциллятором? Сначала подумаем, как будет вести себя система с очень большой Q. Если сила действовала долго, то запасенная энергия была постоянной и работа тратилась лишь для того, чтобы поддержать ее. Предположим теперь, что мы выключили силу, тогда трению, которое раньше поглощало энергию поставщика, питаться больше нечем — кормильца-то нет. И трение начинает пожирать запасенную осциллятором энергию. Пусть добротность системы Q/2p=1000. Это значит, что работа, произведенная за цикл, равна 1/1000 запасенной энергии. Пожалуй, разумно предположить, что при не поддерживаемых внешней силой колебаниях за каждый цикл будет теряться одна тысячная часть имеющейся к началу цикла энергии. Будем считать, что при больших Q изменение энергии описывается угаданным нами приближенным уравнением (мы еще вернемся к этому уравнению и сделаем его совсем верным!)
Уравнение это приближенное, потому что оно справедливо только для больших Q. За каждый радиан система теряет 1/Q часть запасенной энергии Е. Значит, за промежуток времени dt энергия уменьшится в (wdt/Q раз (частота появляется при переводе радианов в настоящие секунды). А какая это частота? Предположим, что система устроена очень жестко, поэтому даже при действии силы она сколько-нибудь заметно колеблется только со своей собственной частотой. Поэтому будем считать, что w — это резонансная частота w0. Таким образом, из уравнения (24.8) следует, что запасенная энергия меняется
следующим образом:
Теперь нам известно значение энергии в любой момент. Какой будет приближенная формула, определяющая амплитуду колебаний как функцию времени? Той же самой? Нет! Потенциальная энергия пружины изменяется как квадрат смещения, кинетическая энергия — как квадрат скорости; это приводит к тому, что полная энергия пропорциональна квадрату смещения. Таким образом, смещение (амплитуда колебаний) будет уменьшаться с половинной скоростью. Иначе говоря, мы ожидаем, что решение в случае затухающего переходного движения будет выглядеть как колебание с частотой, близкой к резонансной частоте w0; амплитуда этого колебания будет уменьшаться как ехр(-gt/2)
Эта формула и фиг. 24.1 дают представление о том, чего следует ожидать, а теперь приступим к точному анализу движения, т. е. к решению дифференциального уравнения движения.
Фиг. 24.1. Затухающие колебания.
Как же решить уравнение (24.1), если выкинуть из него внешнюю силу? Будучи физиками, мы интересуемся не столько методом, сколько самим решением. Поскольку мы люди уже опытные, попытаемся представить решение в виде экспоненциальной кривой, х=Аexp(iat). (Почему мы так поступили? Оттого, что экспоненту легче всего дифференцировать!) Подставим это выражение в (24.1), помня о том, что каждое дифференцирование х по времени сводится к умножению на ia [напомним, что F(t)=0]. Сделать это очень легко, и наше уравнение примет вид
( -a2+iga+w20)Аеiat=0. (24.11)
Левая часть равенства должна быть равна нулю все время, но это возможно только в двух случаях: а) А=0, однако это даже и не решение: ведь тогда все покоится, или б)
Если мы сможем решить это уравнение и найти a, то мы найдем и решение, амплитуда которого А не обязательно равна нулю!
Чтобы не думать о том, как извлечь квадратный корень, предположим, что g меньше w0, и поэтому w20-g2/4 — положительная величина. Беспокоит другое: почему мы получили два решения! Им соответствуют
и
Займемся пока первым решением, предположив, что мы ничего не знаем о том, что квадратный корень принимает два значения. В этом случае смещение х равно x1=Aexp(ia1t), где А — произвольная постоянная. Чтобы сократить запись, введем специальное обозначение для входящего в at квадратного корня:
Так,
Итак, система осциллирует с частотой wg , которая в точности не равна частоте w0, но практически близка к ней, если система достаточно добротна. Кроме того, амплитуда колебаний экспоненциально затухает! Если взять действительную часть (24.16), то мы получим
Это решение очень напоминает угаданное нами решение (24.10), вот только частота немного другая, wg. Но это лишь небольшая поправка, значит, первоначальная идея была правильной.
И все-таки не все благополучно! А не благополучно то, что существует второе решение.
Этому решению соответствует a2, и оно отличается от первого лишь знаком wg
Что все это значит? Скоро мы докажем, что если x1и х2— возможные решения (24.1) при F(t)=0, то х1+х2—тоже решение этого уравнения! Таким образом, общее решение имеет вид
Теперь можно спросить: «А, собственно, зачем нам беспокоить себя еще одним решением, если нас вполне устраивало первое? К чему эти дополнительные решения, если мы все равно должны взять только действительную часть?» Мы знаем, что нужно взять действительную часть, но откуда математика знает, что мы хотим взять действительную часть? Когда у нас была внешняя сила F(t), то мы ее дополнили искусственной силой, и она каким-то образом управляла мнимой частью уравнения. Но когда мы положили F(t)=0, то соглашение о том, что, каково бы ни было х, нужно взять только его действительную часть, стало нашим личным делом, и математическое уравнение об этом ничего не знало. В мире физики есть только действительные решения, но решение, которому мы так радовались, комплексно. Уравнению не известно, что мы делаем совершенно неожиданный шаг и отбираем только действительную часть, и оно предлагает нам еще, так сказать, комплексно сопряженное решение, чтобы, сложив оба решения, мы получили настоящее действительное решение; вот для чего мы взяли еще и a2. Чтобы х было действительным, Ввхр(-iwgt) должно быть комплексно сопряженным к Aexp(iwgt) числом, тогда мнимая часть исчезнет. Таким образом, В должно быть комплексно сопряжено с А, поэтому наше решение имеет вид
Значит, наши колебания — это колебания с фазовым сдвигом и, как полагается, с затуханием.
§ 3. Переходные колебания в электрических цепях
Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.
Фиг. 24,2. Электрическая цепь для демонстраций переходных колебаний.
В этой цепи разность потенциалов между концами индуктивности L поступает в осциллоскоп. Неожиданное включение рубильника S включает дополнительное напряжение и вызывает в осцилляторной цепи переходные колебания. Эти колебания аналогичны колебаниям механического осциллятора, вызванными неожиданным ударом. Сама цепь представляет собой электрический аналог механического осциллятора с затуханием, и мы можем наблюдать колебания при помощи осциллоскопа. Он покажет нам кривые, анализом которых мы и займемся. На фиг. 24.3—24.6 представлены кривые затухающих колебаний, полученные на экране осциллоскопа. На фиг. 24.3 показаны затухающие колебания в цепи с большой Q, т. е. с малым значением g.
Фиг. 24.3. Затухающие колебания.
В такой цепи колебания затухают не очень быстро; мы видим довольно длинную синусоиду с медленно убывающим размахом.
Теперь давайте посмотрим, что произойдет, если мы будем уменьшать Q, так что колебания должны затухать быстрее. Чтобы уменьшить Q, увеличим сопротивление цепи R. При повороте ручки сопротивления колебания действительно затухают скорее (фиг. 24.4).
Фиг. 24.4. Колебания затухают быстрее.
Если еще увеличить сопротивление, то колебания затухнут еще быстрее (фиг. 24.5).
Фиг, 24.5. Колебания почти исчезли.
Но если сопротивление увеличить сверх некоторого предела, колебаний мы вообще не увидим. А может быть, нам просто отказывают глаза? Увеличим еще сопротивление и получим тогда кривую, представленную на фиг. 24.6; по ней можно лишь с натяжкой сказать, что в цепи произошли колебания, ну разве что одно.
Фиг. 24.6. Колебаний нет.
Можем ли мы математически объяснить это явление?
Сопротивление механического осциллятора, конечно, пропорционально g. В нашем случае g— это R/L. Теперь, если увеличивать g, то в столь приятных нам решениях (24.14) и (24.15) наступает беспорядок; когда g/2 становится больше w0, решения приходится записывать по-другому:
Это снова два решения, которые приводят нас к решениям exp(ia1t) и ехр(ia2t). Подставив теперь a1, получим
Никаких колебаний. Чисто экспоненциальное убывание. То же самое дает и второе решение
Заметим, что квадратный корень не может превысить g/2; даже если w0=0, оба члена равны. Если же w20 отличается от g/2/4, то квадратный корень меньше g//2 и выражение в круглых скобках всегда положительно. Это очень хорошо! Почему? Да потому что если бы это выражение было отрицательным, то е пришлось бы возводить в положительную степень и мы получили бы возрастающее со временем решение. Но при увеличении в цепи сопротивления колебания не могут возрастать, значит, мы избегли противоречия. Итак, мы получили два решения; оба решения экспоненциально затухают, но одно из них стремится «умереть» гораздо скорее. Общее решение, конечно, представляет собой комбинацию обоих решений, а значения коэффициентов А и В зависят от того, как начинаются колебания, каковы начальные условия. В нашей цепи случилось так, что А — отрицательное число, а В — положительное, поэтому на экране осциллоскопа мы увидели разность двух экспонент.
Давайте обсудим, как найти коэффициенты А и В (или А и A*), если известны начальные условия. Предположим, что в момент t=0 нам известны смещение х=х0и скорость dx/dt=v0. Если в соотношения
подставить значения t=0, х=х0, dx/dt=v0и воспользоваться тем, что е0=еi0=1, то мы получим
x0=A+A*=2AR,
Значит,
Таким образом, зная начальные условия, мы полностью определили А и А*, а значит, и кривую переходного решения. Можно записать решение и по-другому. Вспомним, что
eiq+e-iq=2cosq и eiq- e-iq=2isinq, тогда
где wg=+Ц(w20-(g2/4). Мы получили формулу затухающих колебаний. Такая формула нам не понадобится, однако отметим ее особенности, справедливые и в более общих случаях.
Прежде всего поведение системы, на которую не действует внешняя сила, описывается суммой (суперпозицией) временных экспонент [мы записали их в виде exp(iat)]. Такое решение хорошо передает истинное положение вещей. В общем случае a — это комплексное число, и его мнимая часть соответствует затуханию колебаний. Наконец, тесная математическая связь синусоидальных и экспоненциальных функций, о которой говорилось в гл. 22, физически часто проявляется в переходе от колебаний к чисто экспоненциальному затуханию при критических значениях некоторых параметров системы (в нашем случае это было сопротивление g).