10.9. Сравнительная характеристика способов противодействия
10.9. Сравнительная характеристика способов противодействия
В этом разделе рассмотрены различные способы противодействия угрожающему телу. Перечислим основные способы воздействия на космические объекты, угрожающие столкновением с Землей, которые предлагались в литературе [Сокольский и др., 1996; Боярчук и др., 1999]:
— применение ядерного взрыва;
— кинетический удар;
— гравитационный буксир;
— использование ракетных реактивных ускорителей, установленных на поверхности астероида;
— направленный выброс вещества с поверхности астероида (например, за счет использования сфокусированной солнечной энергии);
— изменение орбиты астероида путем изменения влияния солнечного давления (покрытие астероида отражающим пластиком или краской);
— покрытие объекта специальным веществом для изменения орбиты с помощью эффекта Ярковского;
— установка солнечного паруса непосредственно на астероиде; — создание на пути угрожающего тела облака частиц или небольших объектов для его торможения.
Первые два способа могут быть использованы как для разрушения, так и для увода угрожающего тела, остальные же, по-видимому, могут осуществить лишь его увод. Рассмотрим эти способы.
В первой ситуации (разрушение) ключевым моментом любого используемого способа является возможность гарантированного разрушения объекта до требуемой степени дисперсности. Во второй ситуации решающей характеристикой действенности способа будет являться его способность обеспечить проведение запланированной и точной коррекции.
Именно с этих позиций, в первую очередь, следует рассматривать способы противодействия. Необходимо также оценить возможность доставки средства противодействия к астероиду.
10.9.1. Воздействие ядерным взрывом. Согласно предложениям, появившимся на ранних этапах обсуждения астероидной угрозы [Симоненко и др., 1994], одним из эффективных способов противодействия опасным объектам может служить использование ядерных взрывов большой мощности. Преимуществом этого способа является высокая концентрация энергии в ядерном заряде, что позволяет использовать сравнительно небольшой по массе и габаритам космический перехватчик. Разумеется, такой перехват должен произойти на достаточно большом расстоянии от Земли. Кроме того, необходимо уменьшить риск попадания продуктов взрыва и облученных обломков перехваченного объекта в атмосферу и на поверхность Земли.
Воздействие ядерного взрыва на космический объект создает: — изменение количества движения, получаемого космическим объектом при действии на него ударной волны (продуктов взрыва и обломков конструкции космического перехватчика);
— импульс скорости, возникающий вследствие реактивных сил, связанных с испарением поверхностного слоя астероида под действием проникающего излучения и расширения продуктов испарения в окружающее пространство;
— дополнительный импульс скорости, обусловленный реактивными силами, связанными с выбросом вещества астероида из образующейся при контактном взрыве воронки.
Результаты расчетов, представленные в работах [Симоненко, 1994; Дегтярь и др., 2008], показывают, что контактные подрывы ядерных
устройств мощностью 10–20 Мт на астероидах диаметром около 1–1,5 км и ядрах комет диаметром до 2,5 км могут создать приращение скорости 1–2 м/с. При этом контактный подрыв оказывается эффективнее неконтактного. Эффективность контактного подрыва может быть существенно увеличена путем заглубленного подрыва ядерного устройства. По оценкам, проведенным в РФЯЦ — ВНИИТФ [Симоненко и др., 1994; Симоненко и др., 2008], заглубление ядерного устройства на 1–2 м увеличивает приращение скорости в 2 раза, а заглубление на 10–15 м — в 7 раз.
Наряду с этим, исследования показали также возможность разрушения астероидов с помощью контактного взрыва ядерного заряда на его поверхности [Симоненко и др., 1994]. В табл. 10.2 приводятся результаты оценок мощности зарядов, необходимых для разрушения астероидов различных размеров, исходя из предполагаемой плотности астероида 3000 кг/м3.
Таблица 10.2. Мощность и масса заряда, необходимые для разрушения астероида
Зависимость эффективности от высоты подрыва над поверхностью астероида приведена в табл. 10.3, где приняты следующие обозначения: H — высота над поверхностью астероида, Ra — радиус астероида, f — эффективность.
Таблица 10.3. Относительная эффективность взрыва над поверхностью астероида
Как следует из табл. 10.3, при H/Ra = 0,1 потребуется увеличение мощности заряда уже вдвое по сравнению с контактным взрывом.
При взрыве ядерного заряда на поверхности астероида должен произойти мощный выброс грунта. По оценкам [Симоненко и др., 1994], контактный взрыв заряда мощностью в 1 Мт вызывает выброс 1 Мт грунта со средней скоростью 100 м/с. Поэтому предполагается, что с помощью ядерного взрыва можно осуществлять изменение траектории движения астероида. Например, взрыв заряда мощностью 10 Мт на поверхности астероида размером 500 м при его перехвате в районе орбиты Марса обеспечит изменение траектории движения астероида, отклонив его на 10 тыс. км к моменту встречи с Землей.
Согласно работе [Симоненко и др., 1994], возможно значительное повышение эффективности использования глубинных ядерных взрывов. Так, если при контактном взрыве на поверхности астероида только 10–13 % его энергии идет на разрушение, то при заглублении заряда в грунт эффективность разрушения составит 70–80 %. Предполагается, что заряд мощностью 20 Мт обеспечивает разрушение астероидов диаметром до 1200–1500 м. Однако реализация заглубленного взрыва потребует не только разработки заряда специальной оригинальной конструкции, но и встречи астероида и заряда с взаимной ориентацией и скоростью, обеспечивающей заглубление заряда в тело астероида.
Оценивая представленные предложения с точки зрения возможностей средств доставки (см. раздел 10.6), можно сделать вывод о том, что использование ядерного заряда имеет весьма ограниченное применение.
Так, оценивая долю заряда в 50 % от полной массы КА, из рис. 10.10 можно видеть, что доля досягаемых астероидов весьма невелика.
Далее, так как полная масса КА не превышает 2000 кг, то из табл. 10.2 видно, что мощность заряда ограничивается величиной порядка нескольких мегатонн. В свою очередь, мощность такого заряда ограничит диаметр разрушаемого астероида немногими сотнями метров лишь в том случае, когда условия подрыва будут оптимальны (поверхностный или заглубленный подрыв). Последнее же потребует реализации специальной системы управления космическим аппаратом, которая должна будет обеспечить посадку ядерного устройства на поверхность астероида (а также дальнейшие операции).
По-видимому, перечисленные соображения составляют лишь малую часть проблем, сопровождающих применение ядерного заряда. К остальным следует отнести проблематичность достаточно точного обеспечения заданного результата воздействия, организационно-техническую сложность работы с ядерным зарядом, специфику его обслуживания на стадии подготовки к применению, новизну задачи обеспечения его исправности при длительном пребывании в непривычных для него условиях космического пространства и т. п.
Наконец, следует вспомнить и о том, что запрет на применение ядерных зарядов в космосе создает политические, экологические и моральные препятствия к их использованию (см. главу 11). По совокупности приведенного перечня проблем (разумеется, далеко не полного) использование ядерных взрывов представляется весьма сложным и плохо прогнозируемым способом противодействия угрожающему астероиду. Поэтому приходится признать, что мы в настоящее время находимся лишь в самом начале исследований возможного использования ядерных взрывов [Симоненко и др., 2008].
10.9.2. Кинетическое воздействие на угрожающий объект. Обратимся к другому популярному варианту противодействия астероидно-кометной опасности — столкновение специального КА с опасным объектом для изменения орбиты угрожающего тела. В литературе обсуждается, например, проект «Дон Кихот» — первая космическая миссия, имеющая целью экспериментальное изменение орбиты астероида подобным способом.
Используя оценочные формулы разделов 10.3 и 10.5, нетрудно получить оценку приращения скорости астероида массой Mа при ударе по нему космическим аппаратом с малой массой mка. В разделе 10.5 была получена формула, дающая приращение скорости астероида dV при ударе:
где Vотн — скорость ударяющего тела относительно астероида, а kуд — поправочный коэффициент, учитывающий побочные эффекты при ударе КА по астероиду с большой скоростью.
В разделе 10.3 были получены выражения, дающие изменения координат астероида по бинормали z, радиус-вектору r и вдоль орбиты l, возникающие при появлении импульсов скорости dVS, dVT, dVW, приложенных по осям орбитальной системы координат S, T, W. Изменения координат отнесены к гелиоцентрическому радиус-вектору астероида r0 и в сводном виде представлены в табл. 10.4.
Таблица 10.4. Максимальные значения ухода координат небесного тела
Почти все изменения координат — периодические, за исключением ухода dl/r0 вдоль орбиты астероида при условии, что приращение скорости произведено по оси Т. В этом случае изменение координаты dl/r0 имеет вековой характер и линейно нарастает с ростом числа витков орбиты астероида Nв.
Все приращения скорости, создаваемые по осям S, T, W, отнесены к гелиоцентрической скорости астероида Vа.
Положим, что удар по астероиду производится по осям S, T, W. Тогда, подставив в выражения, описывающие приращения относительных координат, формулы, соответствующие приращениям скорости астероида, можно получить удобные выражения для оценок итоговых максимальных изменений относительных координат, возникающих после удара:
Здесь максимальные значения периодических изменений координат даны в смысле, рассмотренном в разделе 10.3. Максимальное изменение координаты dzmax/r0 дается для удара, направленного по оси W. Максимальные изменения координат drmax/r0 и dlmax/r0 приведены лишь для случая удара, направленного по оси T, как наиболее эффективные. При этом для координаты dlmax/r0 указано значение на момент времени, соответствующий завершению витка орбиты после удара.
Рассмотрим численный пример, предполагая коррекцию орбиты астероида Апофис, выполняемую ударом космического аппарата в период до 2029 г. Масса Апофиса оценивается величиной Mа ? 5, 0 1010 кг, а его гелиоцентрическую скорость можно принять равной Vа ? 30 км/с. Тогда, взяв среднее значение коэффициента kуд = 3 и предполагая, что КА массой mка = 103 кг ударяет астероид с относительной скоростью Vотн? 10 км/c вдоль оси T, можно получить оценку максимального изменения координат астероида по радиус-вектору, равную dr/r0 ? 2 10-8. Полагая r0 ? 1,5 108 км, нетрудно видеть, что максимальное смещение астероида составит ? 3 км. Следовательно, оказывается, что удар космического аппарата с разумной массой по астероиду в принципе может вывести Апофис из зоны резонансного возврата и устранить опасность встречи Апофиса с Землей в 2036 г.
Так как смещение по радиус-вектору — периодическое, то для получения максимального увода астероида необходимо выполнять удар по астероиду с упреждением относительно момента сближения Апофиса с Землей. В разделе 10.3 показано, что упреждение должно составлять примерно половину витка орбиты астероида. Отсюда следует, что выбор момента старта КА-ударника с Земли для перелета к Апофису должен быть подчинен этому условию. Поэтому обычные методики оптимизации выбора времени старта для получения максимальной массы доставляемой полезной нагрузки в данном случае могут быть неприменимы. Как следствие, масса КА может не достигать максимальных значений, возможных для выбранного носителя.
Дальнейшие, более точные оценки эффективности кинетического воздействия, по-видимому, можно будет получить только при корректном расчете тех или иных конкретных геометрических схем встречи ударного аппарата с астероидом. Однако с самого начала следует иметь в виду, что точность расчетов окончательного эффекта будет низкой вследствие побочных эффектов, сопровождающих удар.
Следовательно, применение кинетического способа увода в обстоятельствах, требующих точного выполнения расчетной коррекции траектории, по-видимому, невозможно. К таким обстоятельствам, прежде всего, нужно отнести случай близкого пролета астероида Апофис мимо Земли в 2029 г. Возможно, кинетический способ и может использоваться как начальная грубая коррекция орбиты угрожающего тела, однако по своей природе он потребует точной доводочной коррекции движения астероида какими-то другими средствами. Одно из таких средств будет рассмотрено в следующем подразделе.
В начале настоящего раздела упоминались способы воздействия на астероид путем направленного выброса вещества астероида в космос, а также за счет создания на пути угрожающего тела облака частиц или небольших объектов для торможения. Нетрудно применить к этим способам все сказанное выше для случая кинетического ударного воздействия.
Что касается направленного выброса вещества, то очевидно, что речь должна идти об устройствах, устанавливаемых на астероиде и выбрасывающих в космос массы, измеряемые тоннами, и притом со скоростями порядка десятка км/с. Второй способ фактически является некоторой модификацией кинетического удара одним телом, также не имеющей ни принципиальных, ни практических преимуществ.
Те же соображения остаются справедливыми для различных аспектов применения давления солнечного света. Достаточно, например, лишь представить себе проблемы разворачивания солнечного паруса на вращающемся астероиде и организацию управления его положением.
10.9.3. Способ гравитационной буксировки. В принципе, воздействие на астероид может быть оказано различными способами, однако с практической точки зрения, оно, прежде всего, должно быть регулируемым и поддаваться простой настройке. Это требование вытекает естественным образом из необходимости выполнения точной коррекции траектории, которая появляется практически во всех критических случаях.
Астронавты Эдвард Лу и Стэнли Лав из Космического центра им. Л. Джонсона (НАСА) предложили метод гравитационной буксировки [Lu et al., 2005]. Этот метод предусматривает вывод специального аппарата на низкую астероидоцентрическую орбиту вокруг астероида, подлежащего уводу. Такой КА, имеющий некоторую массу, должен быть оснащен реактивными двигателями малой тяги. Идея буксировки использует неподвижное зависание КА над астероидом за счет тяги своих реактивных двигателей.
Такое зависание следует реализовать на возможно малой высоте над поверхностью астероида. Тогда КА и астероид будут представлять собой систему гравитационно связанных тел с общим центром масс. При этом тяга двигателей КА оказывается приложенной к этому общему центру масс и, следовательно, вызовет его перемещение в пространстве, что и требуется для проведения коррекции орбиты астероида.
Схема гравитационной буксировки показана на рис. 10.14. Удержание КА в одной и той же позиции относительно астероида достигается применением двух реактивных двигателей, тяги которых разнесены под некоторым углом. Равнодействующая тяг выбирается такой, чтобы она компенсировала вес КА на выбранной высоте. Тогда этот вес становится равным возмущающей силе, прилагаемой к центру масс астероида. Чем ниже выбрана высота КА над центром масс астероида, тем больше будет возмущающая сила. Результат действия последней уже рассматривался в разделе 10.4, а примеры ее использования и оценки приводились в разделе 10.7. Было показано, что сравнительно небольшая сила, действующая длительное время, может обеспечить получение требуемой коррекции буксируемого астероида.
В отличие от установки реактивного двигателя на поверхности астероида, размещение аппарата на орбите около астероида предоставляет ряд преимуществ, так как исключает сложные операции по реализации посадки КА. Кроме того, необходимость учитывать влияние вращения астероида вокруг своей оси отсутствует. Наконец, схема такого воздействия нечувствительна к форме астероида, так как силовое воздействие создается в идеальной схеме взаимодействия материальных точек, которыми являются центры масс астероида и КА.
Рис. 10.14. Схема гравитационной буксировки
Для ощутимых изменений траекторий гектометровых объектов (100–500 м) способом гравитационной буксировки требуется значительное время — от нескольких месяцев до нескольких лет. Расчеты показывают, например, что коррекция орбиты астероида Апофис по схеме гравитационного тягача при массе КА в 1 т и тяге ? 5 гс, создаваемой в течение месяца, способна с запасом увести астероид из зоны резонансного возврата [Lu et al., 2005]. Применение современных электрореактивных двигательных установок с высоким удельным импульсом позволяет реализовать такие режимы. Таким образом, маневр увода Апофиса гравитационной буксировкой, предпринятый достаточно заблаговременно, оказывается в пределах современных технологических возможностей космических средств.
Рассмотренный режим длительного проведения коррекции позволяет вести контроль получаемого результата и вводить необходимые поправки в процесс буксировки в режиме реального времени. После обнаружения опасного объекта ко времени, требующемуся для собственно коррекции траектории, необходимо добавить дополнительное время, необходимое для уточнения орбиты астероида, подготовку КА к старту и его перелета к астероиду. Поэтому для реализации такого метода необходимо уверенно прогнозировать опасность удара астероида как минимум за несколько лет вперед.
Обращаясь к перечню остальных, еще не рассмотренных способов воздействия на угрожающие объекты, можно видеть, что все они отличаются значительными трудностями практической реализации и гораздо большей сложностью по сравнению с уже рассмотренными способами предотвращения удара.
Данный текст является ознакомительным фрагментом.