ВРЕМЯ, ПРОСТРАНСТВО И ТЯГОТЕНИЕ

ВРЕМЯ, ПРОСТРАНСТВО И ТЯГОТЕНИЕ

Каждый знает, что пространство Вселенной трехмерно. Это значит, что у него есть длина, ширина и высота. То же и у всех тел. Или еще: положение точки может быть задано тремя числами — координатами. Если в пространстве проводить прямые линии или плоскости или чертить сложные кривые, то их свойства будут описываться законами геометрии. Эти законы были известны давным-давно, суммированы еще в III веке до нашей эры Евклидом. Именно евклидова геометрия изучается в школе как стройный ряд аксиом и теорем, описывающих все свойства фигур, линий, поверхностей.

Если мы захотим изучать не только местонахождение, но и процессы, происходящие в трехмерном пространстве, то должны включить еще время. Событие, совершающееся в какой-либо точке, характеризуется положением точки, то есть заданием трех ее координат и еще четвертым числом — моментом времени, когда это событие произошло. Момент времени для события есть его четвертая координата. Вот в этом смысле и говорят, что наш мир четырехмерен.

Эти факты, конечно, известны давно. Но почему же раньше, до создания теории относительности, такая формулировка о четырехметрии не рассматривалась как серьезная и несущая новые знания? Все дело в том, что уж очень разными выглядели свойства пространства и времени. Когда мы говорим только о пространстве, то представляем себе застывшую картину, на которой тела или геометрические фигуры как бы зафиксированы в определенный момент. Время же неудержимо бежит (и всегда от прошлого к будущему), и тела могут менять места.

В отличие от пространства, в котором три измерения, время одномерно. И хотя еще древние сравнивали время с прямой линией, это тогда казалось всего лишь наглядным образом, не имеющим глубокого смысла. Картина резко изменилась после открытия теории относительности.

В 1908 году немецкий математик Г. Минковский, развивая идеи этой теории, заявил: «Отныне пространство само по себе и время само по себе должны обратиться в фикции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность». Что имел в виду Г. Минковский, высказываясь столь решительно и категорично?

Он хотел подчеркнуть два обстоятельства. Первое — это относительность промежутков времени и пространственных длин, их зависимость от выбора системы отсчета. Второе, оно и является главным в его высказывании, это то, что пространство и время тесно связаны между собой. Они, по существу, проявляются как разные стороны некоторой единой сущности — четырехмерного пространства-времени. Вот этого тесного единения, неразрывности и не знала доэнштейновская физика. В чем оно проявляется?

Прежде всего пространственные расстояния можно определять, измеряя время, необходимое свету или вообще любым электромагнитным волнам для прохождения измеряемого расстояния. Это известный метод радиолокации. Очень важно при этом, что скорость любых электромагнитных волн совсем не зависит ни от движения их источника, ни от движения тела, отражавшего эти волны, и всегда равна «с». Поэтому расстояние получается просто умножением постоянной скорости «с» на время прохождения электромагнитного сигнала. До теории Эйнштейна не знали, что скорость света постоянна, и думали, что так просто поступать при измерении расстояний нельзя.

Конечно, можно поступить и наоборот, то есть измерять время световым сигналом, пробегающим известное расстояние. Если, например, заставить световой сигнал бегать, отражаясь между двумя зеркалами, разнесенными на три метра друг от друга, то каждый пробег будет длиться одну стомиллионную долю секунды. Сколько раз пробежал этот своеобразный световой маятник между зеркалами, столько стомиллионных долей секунды прошло.

Приведенные примеры показывают связь пространства и времени. Их промежутки отличаются друг от друга всего лишь постоянным и хорошо известным множителем «с».

Не менее важное проявление единства пространства и времени состоит в том, что с ростом скорости тела течение времени на нем замедляется в точном соответствии с уменьшением его продольных (по направлению движения) размеров. Благодаря такому точному соответствию из двух величин — расстояния в пространстве между какими-либо двумя событиями (например, вспышками двух лампочек) и промежутка времени, их разделяющего, простым расчетом можно получить величину, которая постоянна для всех наблюдателей, как бы ни двигались, и никак не зависит от скорости любых «лабораторий». Эта величина играет роль расстояния в четырехмерном пространстве-времени. Пространство-время и есть то «объединение» пространства и времени, о котором говорил Г. Минковский.

Вообразить такое формальное присоединение времени к пространству, пожалуй, нетрудно. Гораздо сложнее наглядно представить себе четырехмерный мир. Удивляться трудности не приходится. Когда мы в школе рисуем плоские геометрические фигуры на листе бумаги, то обычно не испытываем никаких затруднений в изображении этих фигур; они двумерны (имеют только длину и ширину).

Многим гораздо труднее воображать трехмерные фигуры в пространстве — пирамиды, конусы, секущие их плоскости и т. д. Что касается воображения четырехмерных фигур, то иногда это очень трудно даже для специалистов, всю жизнь работающих с теорией относительности.

Так, известный английский физик-теоретик, крупнейший специалист в теории относительности С. Хоукинг говорит: «Невозможно вообразить четырехмерное пространство. Я сам с трудом представляю фигуры в трехмерном пространстве!» Поэтому читателю, испытывающему трудность с представлением четырехмерия, огорчаться не надо. Но специалисты с успехом используют понятие пространства-времени. Так в пространстве-времени можно линией изображать движение какого-либо тела.

На рисунке 3 по горизонтали изображено расстояние в пространстве по одному направлению, а по вертикали отложено время. Здесь же можно для каждого момента времени отмечать положение тела. Если оно покоится в нашей «лаборатории», то есть его расположение не меняется, то это на нашем графике изобразится вертикальной линией. Если тело движется с постоянной скоростью — мы получим наклонную прямую. При произвольных движениях получается кривая линия. Такая линия получила название мировой линии. В общем случае надо вообразить, что тело может двигаться не только по одному направлению, но и по другим двум в пространстве тоже. Его мировая линия будет изображать существование тела в четырехмерном пространстве-времени.

На нашем рисунке 3 сделана попытка показать, что пространство и время выступают как бы совершенно равноправно. Их значения просто отложены по разным осям. Но все же между пространством и временем есть существенная разница: в пространстве можно стоять, во времени стоять нельзя. На рисунке мировая линия покоящегося тела изображена вертикально. Тело как бы увлекается потоком времени вверх, даже если оно не движется в пространстве. И так обстоит дело со всеми вообще телами; их мировые линии не могут остановиться, оборваться в какой-то момент времени, ведь время не останавливается. Пока тело существует, непрерывно продолжается и его мировая линия.

Как мы видим, ничего мистического в представлениях физиков о четырехмерном пространстве-времени нет. А. Эйнштейн как-то заметил: «Мистический трепет охватывает нематематика, когда он слышит о «четырехмерном», — чувство, подобное чувству, внушаемому театральным приведением. И тем не менее нет ничего банальнее фразы, что мир, обитаемый нами, есть четырехмерная пространственно-временная непрерывность».

Конечно, к новому понятию надо привыкнуть. Однако независимо от способности к наглядным представлениям физики-теоретики используют понятие о четырехмерном мире как рабочий инструмент для своих расчетов, оперируя мировыми линиями тел, вычисляя их длину, точки пересечения и так далее. Они развивают в этом четырехмерном мире четырехмерную геометрию, подобную геометрии Евклида. В честь Г. Минковского четырехмерный мир называют пространством-временем Минковского.

После создания в 1905 году теории относительности А. Эйнштейн в течение десяти лет упорно работал над проблемой — как соединить свою теорию с ньютоновским законом всемирного тяготения. Закон тяготения в том виде, как его сформулировал И. Ньютон, несовместим с теорией относительности.

В самом деле, согласно утверждению И. Ньютона сила, с которой одно тело притягивает другое, обратно пропорциональна квадрату расстояния между ними. Поэтому, если притягивающее тело сдвинется, расстояние между телами изменится и это мгновенно скажется на силе притяжения, влияющей на притягиваемое тело. Таким образом, по И. Ньютону, тяготение мгновенно передается сквозь пространство. Но теория относительности утверждает, что этого быть не может. Скорость передачи любой силы, любого влияния не может превышать скорость света, и тяготение не может передаваться мгновенно!

В 1915 году А. Эйнштейн завершил создание новой теории, объединяющей теории относительности и тяготения. Он назвал ее общей теорией относительности. После этого ту теорию, которую Эйнштейн создал в 1905 году и которая не рассматривала тяготение, стали называть специальной теорией относительности.

Математический аппарат новой теории оказался весьма сложным и непривычным для тогдашних физиков, и это послужило одной из причин того, что теория не сразу была понята и принята многими специалистами.

Несмотря на сложность математики, основные идеи теории просты (как и все по-настоящему важное), хотя они и необыкновенно смелы и еще кардинальнее меняют взгляды на пространство и время, чем это делала специальная теория относительности.

Сам И. Ньютон ясно понимал, что он лишь описал закон действия силы тяготения, но как конкретно передается тяготение от одного тела к другому, какова природа его и каков, так сказать, «механизм» работы тяготения, он не знал. Вот что он записал: «Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю… Довольно того, что тяготение на самом деле существует и действует согласно изложенным нами законам, и вполне достаточно для объяснения всех движений небесных тел и моря».

Общая теория относительности А. Эйнштейна раскрывает «механизм» работы тяготения. Она утверждает, что тяготение сильно отличается от всех других сил в природе. Чтобы понять, в чем здесь дело, вспомним такую аналогию. Шар, катящийся по ровной плоскости, движется по прямой — кратчайшей линии между любыми двумя точками. Если заставить его катиться по искривленной поверхности, то он, конечно, будет двигаться не по прямой, а по искривленной линии, так как прямую нельзя уложить на искривленной поверхности. Так, если шар катится по поверхности Земли (считаем поверхность абсолютно ровной сферой без гор, долин и препятствий), то он будет двигаться по кратчайшей линии на сфере. В этом случае такие линии называют дугами больших кругов. Ясно, что это кривые линии, но они «прямейшие» (кратчайшие) на искривленной поверхности земного шара; кстати, такие линии на любой искривленной поверхности называются геодезическими линиями.

Теория тяготения Эйнштейна утверждает, что тяготеющие тела искривляют вокруг себя четырехмерное пространство-время. Мы уже говорили, что трудно наглядно вообразить себе простое пространство-время, а тем более сложно это сделать, когда оно еще и искривленное. Но для математика или физика-теоретика и нет нужды в наглядных представлениях. Для него искривление означает изменение геометрических свойств фигур или тел. Так, если на плоскости отношение длины окружности к ее диаметру равно 2?, то на искривленной поверхности или в «кривом» пространстве это не так. Геометрические соотношения там отличаются от соотношений в геометрии Евклида. И специалисту достаточно знать законы «кривой» геометрии, чтобы оперировать в таком необычном пространстве.

Тот факт, что трехмерное пространство может быть искривленным, теоретически было открыто в начале прошлого века русским математиком Н. Лобачевским и в то же время венгерским математиком Я. Больяи. В середине прошлого века немецкий геометр Г. Риман стал рассматривать в математике «искривленные» пространства не только с тремя измерениями, но и четырехмерные и вообще с любым числом измерений. С той поры геометрию искривленного пространства стали называть неевклидовой. Первооткрыватели неевклидовой геометрии не знали, в каких конкретно условиях может проявиться их геометрия, хотя отдельные догадки об этом высказывали. Созданный ими и их последователями математический аппарат был использован при формулировке общей теории относительности.

Итак, согласно основной идее А. Эйнштейна тяготеющие массы искривляют вокруг себя пространство-время. Рассмотрим теперь другие тела с очень маленькой массой (физики их называют «пробными»), которые движутся в этом искривленном пространстве-времени. Они по-прежнему движутся по геодезическим линиям. Но если в неискривленном пространстве-времени геодезические линии — это прямые, то здесь — в искривленном — они кривые. Вот это движение — движение по искривленным траекториям и с переменной скоростью — мы и воспринимаем как движение под действием сил тяготения. Таким образом, поле тяготения объясняется «искривленной» геометрией пространства-времени.

Известные американские физики Ч. Минзер, К. Торн и Дж. Уилер свою монографию об общей теории относительности, содержащую 1279 страниц большого формата, начинают со следующего шутливого рассказа. «Однажды в саду под яблоней лежал студент и размышлял о том, как по-разному понимали гравитацию Ньютон и Эйнштейн. Неожиданно он вздрогнул: рядом упало яблоко. Студент взглянул на него и заметил, как по его поверхности забегали муравьи. Ему стало любопытно, и он решил выяснить, по какому принципу муравьи выбирают свой путь.

Его взгляд упал на двух муравьев, отправившихся из одной и той же точки в направлениях, слегка отличающихся друг от друга. На этот раз их пути случайно пролегли вблизи углубления в верхней части яблока, причем по разные стороны от него. Каждый из муравьев добросовестно следовал вдоль своей геодезической. Каждый старался бежать по яблочной кожуре как можно прямее. Однако из-за собственной кривизны углубления их пути сначала пересеклись, а затем разошлись в совершенно разных направлениях.

«Можно ли придумать более удачную иллюстрацию для геометрической теории тяготения Эйнштейна? — задумчиво произнес студент. — Муравьи движутся так, будто их притягивает к яблочному черенку. Теперь я гораздо лучше понимаю, о чем говорится в этой книге».

И далее авторы заключают: «Пространство воздействует на материю, «указывая» ей, как двигаться. Материя, в свою очередь, оказывает обратное действие на пространство, «указывая» ему, как искривляться».

В этом объяснении все необычно — и неподдающееся наглядному представлению искривленное четырехмерное пространство-время, и необычность объяснения силы тяготения геометрическими причинами. Физика здесь впервые напрямую связывается с геометрией. И, знакомясь с успехами физики, чем ближе мы подходим к нашей эпохе, тем необычнее становятся ее открытия, а понятия все менее поддаются наглядным представлениям. И ничего не поделаешь! Природа сложна, и раз уж мы проникаем все глубже в ее тайны, то приходится мириться с тем, что это требует все больших усилий, в том числе и от нашего воображения. Наверное, слово «мириться» не очень здесь годится, скорее надо подчеркнуть, что становится все интереснее, хотя и труднее.

Сообщим читателю еще два факта из теории тяготения Эйнштейна.

В теории Ньютона поле тяготения определяется только массой создающего его тела. По теории Эйнштейна в создании тяготения участвуют все виды энергии — это и давление, и натяжение, если они имеются в теле, и электромагнитное поле. Второй важный факт — теория предсказывает, что при ускоренном движении тяготеющих масс должны излучаться волны тяготения подобно тому, как при ускоренном движении зарядов излучаются электромагнитные волны. (Жаль, но мы не будем здесь подробнее говорить о том, что такое волны тяготения.)

Оба эти предсказания теории Эйнштейна, отличающие ее от теории Ньютона, могут проявляться только в экзотических условиях, а в обычных ситуациях эффекты, связанные с этими предсказаниями, очень слабы и совершенно незаметны. Физики часто тяготение называют гравитацией, так иногда будем поступать и мы.

В обычных условиях теория Эйнштейна практически совпадает с теорией Ньютона. А в очень сильных гравитационных полях или же в полях, быстроменяющихся со временем, теория Эйнштейна приводит к выводам, существенно отличающимся от выводов ньютоновской Об этом мы еще поговорим.

Сразу после создания своей теории А. Эйнштейн указал на три эффекта, которые хотя и малы в обычных ситуациях, но все же могут быть проверены астрономическими наблюдениями и подтвердить правильность новой теории.

Первые два эффекта связаны с небольшими отклонениями в движении планет вокруг Солнца и лучей света, проходящих вблизи него, от движения по ньютоновским законам. Сравнение с данными наблюдений обнаружило эти эффекты и полностью подтвердило правильность новой теории. Кстати, наблюдения эффектов Эйнштейна показали, что пространство вблизи Солнца действительно несколько искривлено и его геометрия слегка отличается от геометрия Евклида.

Третий эффект касается времени, и поэтому мы на нем остановимся подробнее.

Теория Эйнштейна предсказывает: в сильном поле тяготения время течет медленнее, чем вне его. Это означает, например, что любые часы у поверхности Солнца идут медленнее, чем на поверхности Земли, ибо тяготение Солнца больше, чем тяготение Земли. По аналогичной причине часы на некоторой высоте над поверхностью Земли идут чуть быстрее, чем на самой поверхности.

Для проверки этого интереснейшего эффекта проведено множество экспериментов, и мы расскажем о некоторых из них. Начнем с наблюдений замедления времени на Солнце.

В качестве «часов» использовались атомы химических элементов. Линии поглощения в спектре Солнца, вызываемые этими атомами, соответствуют определенным частотам колебаний электронов, когда они переходят с одного энергетического уровня в атоме на другой. Если время действительно течет на Солнце медленнее, то должны уменьшаться и частоты этих колебаний, а значит, и линии в спектре смещаться к его красному концу. Этот сдвиг ничтожен, ведь время на Солнце течет медленнее, чем на Земле, всего на две миллионные доли. На такую же долю от частоты спектральной линии она должна сдвинуться в красную сторону. Эффект называют гравитационным красным смещением. Вот это небольшое смещение и предстояло измерить. Если бы не осложняющие эффекты, связанные с движениями масс газа на солнечной поверхности, астрономы с уверенностью могли бы измерить гравитационное красное смещение.

Но эффект Доплера из-за турбулентных движений масс солнечного газа маскирует гравитационный эффект, и астрономы столкнулись здесь с серьезными трудностями. Первые попытки измерения (сразу после предсказания) были не очень удачными, и только сравнительно недавно, в последние десятилетия, исследования солнечного спектра полностью подтвердили теорию. Несмотря на то, что разница в темпе протекания времени на Земле и Солнце ничтожно мала, все же за время существования этих небесных тел разница в количестве протекших там и тут лет накопилась ощутимая. И Земля и Солнце существуют около пяти миллиардов лет, а вот за это время на Земле прошло на 10 тысяч лет больше, чем на Солнце…

В 1968 году американский физик И. Шапиро измерил замедление времени у поверхности Солнца очень оригинальным методом. Он проводил радиолокацию Меркурия, когда тот, двигаясь вокруг Солнца, находился от него с противоположной стороны по отношению к Земле. Радиолокационный луч проходил вблизи поверхности Солнца, и из-за замедления времени ему требовалось чуть больше на прохождение туда и обратно, чем на покрытие такого же расстояния, когда Меркурий находился вдали от Солнца. Эта задержка (около десятитысячной доли секунды) действительно была зафиксирована и измерена.

Астрономы знают звезды гораздо более плотные, чем Солнце, где у поверхности поле тяготения несравненно сильнее. Это нейтронные звезды и белые карлики. Наблюдение эффекта замедления времени при изучении света, идущего от них, также подтвердило теорию. Отметим, что на поверхности нейтронных звезд время течет уже вдвое (!) медленнее.

Особенно интересно, что замедление течения времени в поле тяготения было измерено непосредственно в лабораторных условиях на Земле. Это сделали в 1960 году американские физики Р. Паунд и Г. Ребка. Они сравнивали ход времени у основания башни и на высоте 22,6 метра, где ход времени должен быть чуть быстрее. Роль часов играли при этом очень точные приборы, использующие явление излучения в некоторых условиях гамма-лучей строго определенной частоты. Разность хода часов по предсказаниям теории составляла фантастически малую величину — три десятитысячных от миллиардной доли процента. И эта разница была зафиксирована!

Спустя шестнадцать лет аналогичные эксперименты были повторены, но в иных условиях. В одном из них с помощью ракеты был запущен на высоту около десяти тысяч километров прибор, дающий излучение на строго определенной частоте (так называемый водородный стандарт частоты). На этой высоте ход времени опережает ход на поверхности Земли тоже лишь на ничтожную величину, но все же разница в темпах в сто тысяч раз больше, чем в экспериментах Р. Паунда и Г. Ребка. Продолжительность эксперимента (длительность полета ракеты) составила два часа. Но этому предшествовало пять лет напряженной работы. Формула Эйнштейна была подтверждена с точностью до двух сотых процента!

Примерно в это же время были проведены и прямые эксперименты с часами, правда, с часами сверхточными — атомными.

Итальянские физики отвезли несколько таких «часов» на грузовике в горы, а затем, по прошествии нескольких часов, привезли обратно в долину и сравнили их показания с часами, все время остававшимися внизу. Часы, которые были внизу, отстали в полном соответствии с теорией Эйнштейна. Сама величина отставания измерялась при этом наносекундами, то есть миллиардными долями секунды.

В эксперименте американских физиков атомные часы помещались на самолете, который летал на высоте около девяти километров в течение четырнадцати часов. Затем, после приземления, показания часов сравнивались с находившимися на Земле. И здесь теория Эйнштейна была полностью подтверждена.

Итак, не может быть никакого сомнения в замедлении течения времени в гравитационном поле. В большинстве описанных случаев изменение ничтожно мало, но мы увидим, что астрономы и физики знают ситуации, когда разница в беге времени колоссальна.

Общая теория относительности полностью изменила наши представления о пространстве и времени. И то и другое перестало быть неизменной сценой, на которой развертывается драматическая история Вселенной. Пространство не есть какой-то бесконечный жесткий каркас. Движущаяся материя искривляет его, меняет геометрические свойства. Постепенно оставалось все меньше и меньше от наивного представления наших предшественников о единой реке времени. Теперь она представляется текущей не везде одинаково величаво: то быстро в сужениях, то медленно на плесах, то, как мы увидим далее, разбивается на множество рукавов и ручейков с разной скоростью течения в зависимости от условий.