ПУТЕШЕСТВИЕ В НЕОБЫЧНЫЕ ГЛУБИНЫ
ПУТЕШЕСТВИЕ В НЕОБЫЧНЫЕ ГЛУБИНЫ
В нашем путешествии к истокам реки времени мы столкнемся с фактом, что чем ближе к сингулярности, тем выше температура Вселенной, а следовательно, больше энергия частиц материи. Какие процессы мы должны ожидать здесь, в мире гигантских энергий? Для того чтобы разобраться в этом, оставим на время космологию и отправимся в область бесконечно малого — в мир современной физики элементарных частиц.
Это наше путешествие будет очень кратким, и мы познакомимся в основном лишь с фактами, особенно важными для понимания процессов в ранней Все· ленной.
В физике элементарных частиц за последние два десятка лет произошел настоящий переворот. Стало ясно, что элементарные частицы, из которых состоит вещество, например такие, как протон и нейтрон, это вовсе не «кирпичики мироздания», а сложные системы, состоящие из еще более элементарных объектов — кварков. Было установлено существование целых классов новых частиц с совершенно необычными свойствами. Но, пожалуй, самое важное — это установление замечательного единства различных сил природы, которые еще недавно считались совсем несхожими по своей сути. Такое единство проявляется при очень больших энергиях и поэтому особенно важно для понимания начала расширения Вселенной.
Физика не впервые сталкивается с ситуацией, когда силы, совсем непохожие друг на друга, оказывались различными проявлениями более общей сущности. Такое случилось с электрическими и магнитными взаимодействиями. Люди были знакомы с проявлениями этих сил с незапамятных времен и думали, что магниты никак не воздействуют на электрические заряды и наоборот. Однако опытами А. Ампера, М. Фарадея и других было установлено, что движущиеся заряды создают магнитное поле, а движение магнита ведет к появлению электрических сил. Электромагнитная теория Дж. Максвелла через полвека объединила эти на первый взгляд разные взаимодействия в единую сущность — в электромагнитное поле. Таким образом, оказалось, что электромагнетизм един, и только в специальных условиях, когда нет движения, нет изменения полей во времени, он распадается на электричество и магнетизм.
А. Эйнштейн вскоре после создания общей теории относительности начал титаническую работу, пытаясь объединить электромагнетизм и гравитацию — те два вида взаимодействий, которые тогда были известны. Эти попытки он продолжал всю жизнь. Однако в то время наука не была еще готова не только для успешного выполнения этой задачи, но даже для осмысления грандиозности и значимости этих попыток. Очень многие физики относились к попыткам А. Эйнштейна весьма скептически. Так, знаменитый физик В. Паули образно говорил по этому поводу: «Что разделено богом, человеку не соединить». Когда же позднее начались попытки объединения других сил природы, то они часто встречали такой же скептицизм.
Весной 1988 года в Триесте я спросил знаменитого пакистанского физика, директора Международного исследовательского центра А. Салама о первых попытках создания теорий, объединяющих различные силы. Он ответил, что лет тридцать назад в это почти никто не верил, и посоветовал прочитать письмо, которое ему написал В. Паули в 1957 году и которое А. Салам приводит в одной из своих статей. В этом письме говорится: «Не торопясь читаю Вашу статью. (Под ярким Солнцем на берегу Цюрихского озера.) Меня очень удивило ее название — «Универсальное взаимодействие Ферми»; это связано с тем, что с некоторых пор я придерживаюсь правила: если теоретик говорит «универсальный», то это означает чистую бессмыслицу».
С времен первых попыток А. Эйнштейна прошло много десятилетий, и ситуация в физике резко изменилась. В настоящее время известны четыре вида физических взаимодействий: гравитационные, слабые, электромагнитные и сильные.
До сих пор мы говорили главным образом о гравитационном взаимодействии, управляющем движением небесных тел, но в мире элементарных частиц им можно пренебречь. Несколько предварительных слов о трех других взаимодействиях.
Примером процесса, идущего за счет слабого взаимодействия, является распад свободного нейтрона n на протон р, электрон е и антинейтрино ?e. Мы видим существенное отличие проявления этого взаимодействия от рассмотренных нами проявлений гравитационного взаимодействия. Гравитация в том понимании медленных движений, о котором мы говорили, меняет только состояние движения частиц, слабое же взаимодействие меняет внутреннюю природу частиц: вместо нейтрона появляются протон, электрон и антинейтрино.
Сильные взаимодействия обусловливают различные ядерные реакции (такие, например, как термоядерные реакции), а также возникновение сил, связывающих нейтроны и протоны в ядра.
С электрическими и магнитными силами мы знакомы по школьным опытам, а поэтому они не нуждаются в комментариях.
Частицы, из которых состоит материя, делятся на группы в зависимости от свойств их взаимодействия.
Частицы, не участвующие в сильных взаимодействиях, называют лептонами. Таких частиц шесть. Это электрон e, мюон ?-, тау-лептон ?- и три сорта нейтрино: электронное ?e мюонное ?? и тау-нейтрино ??. (Тау-нейтрино пока не открыто. Однако, по-видимому, никто не сомневается в его существовании. Мы в дальнейшем не будем делать оговорок об отдельной неполноте наших знаний.)
Лептоны группируются в пары: электрон с электронным нейтрино, мюон — с мюонным, тау-лептон — с тау-нейтрино. Это объединение обусловлено тем, что каждый сорт нейтрино участвует в реакциях вместе со своим партнером по паре. Первые три частицы имеют электрический заряд, равный заряду электрона. Все сорта нейтрино электронейтральны.
Остальные фундаментальные частицы носят название кварков; они участвуют в сильных взаимодействиях (а также и в слабых, и в электромагнитных). Из кварков слагаются частицы, участвующие в сильных взаимодействиях, и называются адронами. Примерами адронов являются протон, нейтрон, пи-мезон. Всего кварков шесть, они обозначаются латинскими буквами и также группируются в три семейства, соответствующие семействам лептонов: (u, d), (с, s), (t, b).
Кварки имеют довольно экзотические свойства. Если выражать их электрический заряд в единицах заряда электрона, то оказывается, что заряды кварков дробные. Первые частицы в каждой паре имеют заряд +2/3. Остальные ? -1/3. Каждой частице соответствует античастица. Для электрически заряженных частиц заряд античастиц противоположен. Например, электрону е- с отрицательным зарядом соответствует античастица позитрон е+ с положительным зарядом, кварку u с зарядом +2/3 соответствует антикварк ? с зарядом -2/3 и т. д. (Античастицу обычно обозначают черточкой над буквой.)
Все перечисленные выше фундаментальные частицы, из которых состоит физическая материя, обладают еще одним важным свойством. Им присуще собственное вращение — внутренний момент импульса, или, как его называют в квантовой механике, спин. Причем спин этих частиц, измеренный в единицах планковской постоянной ?, равен 1/2.
Еще несколько слов о кварках. Как уже было сказано, кварки являются составляющими частями сильно-взаимодействующих частиц — адронов. Адроны, в свою очередь, подразделяются на барионы, у которых полуцелые спины и мезоны с целыми спинами. Каждый барион состоит из трех кварков, а мезон — из кварка и антикварка. При таких объединениях заряд составной частицы обязательно оказывается целым. Например, состав протона — uud, нейтрона — ddu, состав ?+-мезона — ?d.
Замечательной особенностью кварков является то, что в сегодняшней Вселенной они существуют только в связанных состояниях — только в составе адронов. Одиночные, свободные кварки физиками не обнаружены, несмотря на многочисленные попытки это сделать. Почему кварк не может быть вырван из адрона или создан каким-либо иным способом?
Это один из основных вопросов физики элементарных частиц, и мы к нему еще вернемся.
Перечисленные нами элементарные частицы физической материи имеют полуцелые спины, и их называют фермионами.
Обратимся к проблеме взаимодействия между частицами. Все процессы, которые происходят во Вселенной, есть результат этих взаимодействий. Но как же происходят взаимодействия, в чем их суть?
Частицы взаимодействуют путем обмена другими частицами — переносчиками взаимодействия. Каждый из перечисленных выше четырех видов взаимодействия имеет своих переносчиков.
Начнем с хорошо известного нам электромагнитного взаимодействия. Переносчиком его является фотон. На рис. 9 изображена схема электромагнитного взаимодействия между протоном и электроном. Протон испускает фотон, который поглощается электроном.
Читателю, конечно, известно, что наглядные представления для мира элементарных частиц невозможны, так как там действуют совершенно непривычные для нас законы квантовой механики. Невозможны, конечно, и наглядные картинки. Тем не менее подобные схемы, как выразился в популярной статье американский физик М. Гелл-Манн, создают «иллюзию понимания» и до некоторой степени помогают, если не понять полностью, то по крайней мере создать образ того, что происходит. Надо сказать, что для специалистов подобные схемы служат и рабочим инструментом для расчетов взаимодействий. Они получили название диаграмм Фейнмана, по имени их изобретателя — известного американского физика.
В случае гравитационного взаимодействия переносчиками являются кванты поля тяготения — гравитоны. Мы пока не будем говорить об этом виде взаимодействия. И фотоны, и гравитоны не имеют массы (как говорят, массы покоя) и всегда движутся со скоростью света.
Слабые взаимодействия также имеют своих переносчиков. Это частицы, которые получили название векторных бозонов (мы не будем объяснять, почему их так называют). Их три (а не по одной частице, как было в случае электромагнитного и гравитационного взаимодействий): W±, Z0. Частицы W+ и W- несут положительный и отрицательный заряды соответственно, a Z0 — частица электронейтральная. Пример слабого взаимодействия с участием W--частицы показан на рис. 10. Эта схема изображает распад нейтрона.
Существенным отличием переносчиков слабого взаимодействия от фотона и гравитона является то, что они очень массивны. Примерно в сто раз тяжелее протона. С массивностью переносчиков связан тот факт, что слабое взаимодействие возможно только на очень коротких расстояниях. Это расстояние в тысячу раз меньше размера атомного ядра. Напомним, что ядро, в свою очередь, в сто тысяч раз меньше размера атома.
Почему слабое взаимодействие действует на столь коротких расстояниях? Дело заключается в следующем. Чтобы испустить тяжелую частицу-переносчика, взаимодействующая частица должна затратить большую энергию. Но эту энергию неоткуда взять! Однако в мире элементарных частиц существует так называемое соотношение неопределенностей. Оно гласит, что при измерении продолжительностью не более чем ?t, нельзя измерить энергию с точностью лучше, чем частное от деления постоянной Планка ? на ?t.
Это означает, что на короткий промежуток времени ?t у частицы или системы может появляться энергия как бы «ниоткуда», но эта «занятая» энергия должна быть такова, чтобы за время ?t ее нельзя было измерить и чтобы, таким образом, не вступить в противоречие с законом сохранения энергии.
Мы видим здесь, что в мире элементарных частиц время оказывается связано с энергией. Если энергия определена точно, то промежуток времени, соответствующий этому состоянию, велик и совершенно неопределен. И наоборот. Мы вновь встречаем явную связь времени и энергии, о которой говорилось в разделе «Энергия из черных дыр».
Напомним здесь еще об одном проявлении этой связи, которая давно была установлена физиками. Речь идет о законе сохранения энергии.
То, что энергия не может взяться «ниоткуда», было установлено после многочисленных, продолжающихся столетия, неудачных попыток построить вечный двигатель. Закон сохранения энергии был сформулирован в 1842 году немецким врачом Ю. Майером. Любопытно, что он пришел к этому выводу после плавания корабельным врачом на остров Яву. Наблюдения за венозной кровью матросов натолкнуло его на мысль, что механическая работа и теплота могут взаимопревращаться. В 1842 году он опубликовал работу «Замечания относительно сил неживой природы», в которой и сформулировал свой закон сохранения и превращения энергии. Через несколько лет этот закон был переоткрыт Дж. Джоулем и Г. Гельмгольцем. Работы Майера долго оставались непризнанными. Он пытался защитить свой приоритет. Это привело его к тяжелому нервному расстройству. В 1862 году Р. Клаузиус и Дж. Тиндаль обратили внимание на эти работы, и его приоритет был признан.
Закон сохранения энергии гласит, что энергия системы, которая изолирована и ни с чем не взаимодействует, не может измениться. Она сохраняется с течением времени.
Глубокая причина этого фундаментального свойства природы была вскрыта в 1918 году немецким математиком Эмми Нетер. Она показала, что энергия сохраняется потому, что время однородно. Все моменты времени равноправны согласно физике Ньютона. Вот по этой причине, как строго математически показала Э. Нетер, энергия во все моменты времени одинакова. Это был совсем новый подход к законам физики, основанный на свойствах, как говорят, симметрии времени. Оказалось также, что другие физические величины — импульс тела и момент импульса — сохраняются со временем также благодаря свойствам симметрии, на этот раз — симметрии пространства.
Так впервые были открыты глубинные связи физических свойств симметрии пространства и времени. Идеи симметрии, как мы увидим, являются руководящими в современной физике.
Вернемся теперь к нашим взаимодействующим частицам. Чем больше масса переносчика взаимодействия, тем больше его энергия. Из-за соотношения неопределенностей следует, что чем больше энергия, тем должен быть меньше промежуток времени, прошедший между испусканием переносчика (при котором «занимается» энергия) и его поглощением (когда отдается «долг»). Так, в случае векторных бозонов в сто раз более тяжелых, чем протон, промежуток ?t оказывается одной сто миллионной, миллиардной миллиардной доли секунды! За это время частица-переносчик, двигаясь даже со скоростью света, успеет пройти расстояние не больше, чем тысячная доля поперечника атомного ядра. Это и определяет радиус действия слабых ядерных сил.
Обратимся теперь к сильным взаимодействиям. Их переносчиками являются глюоны. Подобно фотону они не имеют массы покоя. В случае электромагнитного взаимодействия испускание и поглощение переносчиков связаны с наличием у частицы электрического заряда. В случае сильных взаимодействий испускание и поглощение глюонов также связаны с наличием у кварков особых зарядов. Однако эти заряды бывают трех различных видов и получили названия: красный, желтый и синий. Само сильное взаимодействие иногда называют цветной силой. Любой кварк может иметь один из трех «цветов». Разумеется, никакого отношения к обычному цвету эти условные названия не имеют.
Другим отличием сильных взаимодействий от электромагнетизма является то, что глюоны сами переносят цветовые заряды и являются, таким образом, цветозаряженными. Напомним, что фотон не несет электрического заряда. Пример сильного взаимодействия между кварками показан на рис. 11.
Все рассмотренные нами переносчики сил обладают общим свойством: они имеют целочисленный спин (напомним, что спины фундаментальных частиц полуцелые). У фотонов, W+-, W--, Z0 -бозонов и глюонов спин равен 1, у гравитонов — 2 (в единицах ?). Частицы с целыми спинами называют бозонами.
На этом, казалось, можно было бы остановиться в нашем путешествии в микромир, в нашем знакомстве с мельчайшими, известными сегодня частицами материи. Но в действительности те достаточно надежно установленные факты, о которых мы рассказали, это только вступление к знакомству с поистине удивительным миром бесконечно малого.
Свойства этого мира тесно переплетены со свойствами бесконечно большой Вселенной. Приведенные краткие сведения могут рассматриваться лишь как своеобразная «верхушка айсберга», видимая нами сегодня при рассмотрении процессов, протекающих со сравнительно малыми энергиями. Подлинная суть явлений в микромире гораздо обширнее, она захватывающе интересна и важна для космологии. С некоторыми аспектами этой «подводной» части айсберга мы сейчас и познакомимся. Следует особо предупредить читателей, что специалистам далеко еще не все ясно в структуре «подводной части», и чем глубже мы будем проникать в суть явлений, тем более гипотетичными будут некоторые сведения. Тем не менее эти сведения с переднего края науки настолько важны, что мы считаем необходимым познакомить с ними читателя, имея в виду то, что основные контуры явлений очерчены здесь наукой, по-видимому, правильно.