ГЛАВА ТРЕТЬЯ.

ГЛАВА ТРЕТЬЯ.

В ней говорится о том, что находится за порогом неизвестного: об универсальном конструкторе, об анатомии кварка, о таинственных хиггсонах и других вещах, которые обсуждают теоретики, но никогда еще не видели экспериментаторы

По преданию, великий древнегреческий ученый Архимед открыл свой знаменитый закон, купаясь в ванне. Погруженное в жидкость тело теряет в своем весе ровно столько, сколько весит вытесненная им жидкость. Сегодня об этом знает каждый школьник. Так вот, при взаимодействии частиц происходит нечто похожее. Частицы оказываются погруженными в силовое поле, в своеобразную силовую ванну, и их массы уменьшаются — частицы становятся легче. Излишняя масса в виде излучения выплескивается в окружающее пространство. То же самое происходит при слиянии атомных ядер — здесь «брызги энергии» разлетаются во все стороны в виде быстро движущихся частиц и электромагнитных волн.

Выделение энергии в процессах слияния может быть огромным, как это происходит, например, при взрыве водородной бомбы, когда из каждых двух ядер тяжелого водорода, содержащегося внутри бомбы, образуется ядро гелия. Чем больше высвобождается энергии, тем более плотной и крепко связанной оказывается составная система — ядро или частица и тем труднее расщепить ее на части. Интенсивное силовое поле внутри такой системы напоминает густой сироп, в котором плавают ягодки-частицы.

Но вот что сейчас нам важно усвоить: масса поля, связывающего протон и нейтроны в ядро тяжелого водорода, в тысячи раз меньше их собственной массы. Поэтому, объединяясь в ядро, эти частицы не теряют своей индивидуальности — остаются сами собой. А вот внутри самого протона и нейтрона связи настолько сильны, что кварки, мезоны и другие частицы, из которых слеплен нуклон, почти полностью, если можно так выразиться, растворены в энергии их взаимодействия. Внутри элементарной частицы на связь ее частей уходит значительная доля общей энергии и массы. Это как раз и отличает элементарную частицу от тех частиц, которые мы называем составными, хотя и те и другие имеют сложную внутреннюю структуру.

Энергию связи вычислить нетрудно. Она равна разности массы частицы и суммы масс частиц — ее компонентов. Зная эту энергию, мы сразу можем сказать, элементарная перед нами частица или же составная, сложная.

Плохо только, что элементарных частиц набирается слишком уж много — несколько сотен, список их продолжает расти, и конца ему пока не видно. А если верить теории, то при слиянии любой пары частиц должна образоваться новая частица, поэтому число элементарных частиц вообще может оказаться бесконечным. Расчеты показывают, что, например, частиц, которые в 2—3 раза тяжелее протона, должно быть сотни тысяч, а частиц с массой в 5 раз тяжелее протона — сотни миллионов!

Трудно, по правде говоря, согласиться с тем, что природе понадобилось такое огромное количество простейших «строительных деталей». Весь наш предшествующий опыт свидетельствует о том, что природа всегда экономна в своих средствах. Но, с другой стороны, какое природе дело до нашего опыта и наших привычек?

В целом вся эта картина напоминает атомистику Демокрита и его последователей с бесконечным числом первичных элементов. Выходит, мы не так уж и далеко ушли от древних. С этим тоже не хочется соглашаться. Невольно напрашивается мысль о каком-то более глубоком уровне «суперэлементарных» частиц, будь то кварки, о которых говорилось выше, или еще что-то. Тем более что нечто подобное в истории науки уже было — с атомами химических элементов. Их ведь тоже немало, а когда-то все они тоже считались элементарными — равноправными и неделимыми.

Когда имеешь дело с выступающим из берегов океаном элементарных частиц, первое, что хочется сделать,— это попытаться все-таки выделить какие-то «наиболее элементарные» частицы, из которых можно составить все остальные. Таких попыток было много. Однако из них пока ничего не вышло: все частицы оказались в равной степени «элементарны», и любую из них можно включить в группу основных, из которых строятся все остальные.

И все-таки многолетние усилия физиков не пропали даром. Было установлено, что частицы можно разбить на группы — мультиплеты, и члены каждого из них можно рассматривать как различные состояния одной и той же частицы. Были найдены мультиплеты, состоящие из восьми и десяти частиц, — так называемые октеты и декуплеты. Известны мультиплеты, содержащие всего лишь по одной частице; их называют синглетами.

Мультиплеты объединяются в более сложные семейства — супермультиплеты. Уже неплохо изучены супермультиплеты, состоящие из 35 и 56 частиц. И самое главное, выяснилось, что мультиплеты и супермультиплеты не изолированы друг от друга, они связаны определенными соотношениями — правилами симметрии.

Получается нечто вроде периодической системы частиц, похожей на ту, благодаря которой Менделеев навел порядок среди химических элементов. И подобно тому как менделеевская система помогла открыть не известные ранее элементы, симметрия мультиплетов тоже предсказывает существование новых элементарных частиц, в том числе и кварков.

Все мы помним, что менделеевская таблица начинается с простейшего химического элемента — водорода, ядро которого состоит из одного протона. В той же клетке таблицы помещается собрат водорода — дейтерий с ядром из двух «слипшихся» частиц — протона и нейтрона. Эти два внутриядерных «кирпичика», образующие двухчастный мультиплет нуклон, и лежат в основе всей таблицы. «Периодическую таблицу» элементарных частиц возглавляет мультиплет, состоящий из трех кварков. Их можно считать «самыми элементарными», потому что из них можно построить все другие частицы — иногда простым «сложением», как атомные ядра из протонов и нейтронов, а иногда как возбужденные состояния уже построенных частиц.

Теперь самое время сделать важную оговорку. Кварки все же не универсальный «строительный материал». Из них нельзя «слепить» все без исключения элементарные частицы, а только сильновзаимодействующие. Кроме этих частиц, есть еще такие; интенсивность взаимодействия которых, а точнее сказать — его вероятность, намного меньше. По крайней мере в тысячу раз. Это известный нам электрон и три мезона, которые обозначают греческими буквами «мю», «тау» и «эпсилон». Впрочем, правильнее

было бы назвать их не мезонами, а тяжелыми электронами, так как они обладают такими же свойствами, что и электрон, только весят больше и в отличие от электрона они радиоактивны, то есть подвержены распаду.

Физикам до сих пор неясно, зачем природе потребовалось несколько различающихся по массе «изданий» электрона.

К этим частицам следует добавить еще и нейтрино, которое можно считать электроном, потерявшим заряд и массу, так сказать, «выродившимся» электроном. В газетах и даже научных журналах, правда, сообщалось, что в точных экспериментах у нейтрино обнаружена маленькая масса, однако контрольные опыты этого пока не подтвердили (хотя и не опровергли). Работать с этой частицей необычайно трудно, так как она удивительно слабо взаимодействует с веществом. В этом отношении нейтрино рекордсмен. Поток нейтрино, почти не ослабевая, проходит не только сквозь Землю, но и сквозь гигантское по сравнению с нею Солнце.

Так вот, нейтрино и другие слабовзаимодействующие электроноподобные частицы нельзя построить из кварков. Они составляют совершенно особое, изолированное семейство. Это частицы-точки, их размеры по крайней мере в тысячу раз меньше, чем у сильновзаимодействующих частиц. Физики называют их лептонами, а все сильновзаимодействующие частицы — адронами.

Названия эти происходят от греческих слов «легкий» и «тяжелый». Они возникли, когда физики еще не знали частиц тау и эпсилон. Электрон и мю-мезон, не говоря уже о нейтрино, действительно легче всех сильновзаимодействующих частиц. Но как можно назвать легким недавно открытый эпсилон-мезон, который весит столько же, сколько ядро бора,— в десять раз больше протона! Названия «лептон» и «адрон» сделались уже чисто условными, фактически синонимами эпитетов «слабо-» и «сильновзаимодействующий». Но такова уж сила привычки — физикам трудно отказаться от прочно вошедших в язык терминов.

Итак, все окружающее нас вещество можно скомпоновать всего из трех «кирпичей»: электрона, кварка и антикварка. Кроме того, требуются еще три безмассовые частицы: глюон, фотон и гравитон, то есть кванты склеивающих полей — межкваркового, электромагнитного и гравитационного (поля тяготения). Кварк и антикварк нужны, чтобы с помощью глюонного «клея» слепить протоны и нейтроны, из которых состоят атомные ядра, и связывающие их пи-мезоны; электроны — чтобы с помощью электромагнитных сил построить атомы и молекулы. Эти же силы объединяют различные вещества в жидкости и твердые тела. Гравитация же нужна для образования космических объектов — планет, звезд, галактик и самой Вселенной.

Рассуждая таким образом, мы чувствуем, что все остальные частицы просто лишние. А их сотни — мезоны различных типов, гипероны и так далее. Да и в самом деле, зачем они, если без них можно обойтись?

Однажды мой сосед, бухгалтер, стал налаживать свой телевизор. Экран вскоре засветился, а сосед с гордостью продемонстрировал мне кучку ненужных, по его словам, сопротивлений и конденсаторов. Правда, через несколько минут что-то заискрило, запахло горелым, а механик из радиомастерской потом удивлялся, как у нас вообще квартира не сгорела.

То же с частицами. У природы нет лишних деталей. Если назначение некоторых из них остается неясным, это свидетельствует лишь о низком уровне наших знаний, а отнюдь не о склонности природы к излишествам. И серьезные исследования обычно это подтверждают.

С тех пор как теоретики выдумали кварки, прошло 20 лет. И хотя эти удивительные частицы еще никому не удалось наблюдать в «живом виде», они помогли объяснить так много экспериментальных данных, что физику сейчас просто невозможно обойтись без них. По мнению большинства ученых, если кварков как реальных объектов и не существует в природе, то это само по себе было бы поразительной, величайшей загадкой.

Знаменитый французский математик Анри Пуанкаре как-то заметил, что всякой истине суждено одно мгновение торжества между бесконечностью, когда ее считают неверной, и бесконечностью, когда она становится тривиальной. И хотя к кваркам успели уже привыкнуть, до тривиальности здесь еще далеко. Кварки во многом еще таинственны, не похожи ни на что. Взять хотя бы их электрический заряд: ведь если протон, заряд которого равен единице, состоит из трех кварков, значит, у этих кварков заряды дробные? А до сих пор считалось непреложным законом — и об этом написано во всех учебниках,— что самый маленький электрический заряд у протона и электрона и равен он не дроби, а целому числу. Принимался он всегда за единицу — положительную и отрицательную. И вот теперь выясняется, что заряды у кварков еще меньше: они составляют одну и две трети заряда протона.

В древнегреческих мифах рассказывается о кентаврах— полулюдях-полулошадях. Таким вот кентавром среди элементарных частиц и выглядит кварк. У него не только дробный электрический заряд — он еще по своим свойствам должен одновременно считаться нуклоном, мезоном и гипероном! Всем сразу. С таким необычным, противоречивым объектом физики еще не встречались. Чтобы описать его сложные свойства, сначала предположили, что он имеет три состояния. Вскоре, однако, были открыты новые типы элементарных частиц — так называемые прелестные и очарованные частицы,— пришлось ввести в обиход еще два кирпичика-кварка. Теоретики убеждены, что должен существовать еще и шестой кварк. Недавно получены экспериментальные доказательства этой гипотезы. Может быть, список кварковых состояний этим не исчерпывается.

Хороша «самая простая», «суперэлементарная» частица, не правда ли? Целое семейство из шести братьев-компонентов, а то и больше!

Но и этого мало. Когда мы строим частицы из кварков, нельзя размещать их внутри частиц произвольно. Для них, как для зрителей в театре, отведены вполне определенные, строго пронумерованные «квантовые места». И вот выяснилось, что внутри некоторых частиц билет с одним и тем же номером получают сразу несколько кварков. Чтобы восстановить порядок, физикам пришлось допустить, что кресел в зале вполне достаточно, но они различаются не только своими номерами, а и цветом: под одним и тем же номером значатся кресла трех цветов — синие, красные и зеленые. Соответственно и билеты пришлось покрасить в три цвета, то есть допустить, что каждое из шести состояний кварка делится еще на три. Так возникла выдвинутая советскими и японскими физиками гипотеза о цветных кварках.

Конечно, никакого цвета в обычном понимании этого слова у кварков нет. Ведь цвет — это свойство тела, зависящее от того, какую часть спектра падающего на него света тело поглощает, а какую рассеивает.

Кварк только рассеивает свет, поглощать его он не может, так как для этого он должен был бы быть не простейшим кирпичиком, а системой со сложной структурой (с электронными уровнями), на возбуждение которой и пошла бы энергия поглощенного света. «Цвет кварка» — это только удобный термин, такой же, как «странность», «очарование» или «прелесть», которыми физики обозначают определенные свойства частиц. В последнее время стало общепринятым говорить еще и об «аромате» кварка — так называют все его параметры, не зависящие от «цвета». Физики предпочитают пользоваться необычными названиями — они легко запоминаются! Хотя, спору нет, выражения вроде «аромат прелестного кварка» или «опыт по измерению очарования» звучат для непривычного уха более чем странно.

Давайте подсчитаем теперь, сколько же осталось самых элементарных», не сводимых друг к другу частиц.

Прежде всего это кварк и антикварк плюс связывающая их частица глюон. Ее название происходит от английского слова glue — клей. Глюонное поле связывает кварки и антикварки, подобно тому, как электромагнитное поле и его кванты — фотоны — «привязывают» электроны к ядру в атоме. Хотя глюоны тоже еще никогда не наблюдались в «живом виде», без них нельзя построить адронов. В список «самых элементарных» придется также включить упомянутый фотон и опять же не наблюдавшуюся еще частицу поля тяготения — гравитон. Еще семь лептонов — электрон, нейтрино трех типов, мю- и тау-мезоны и соответствующие антилептоны.

Итак, вместо нескольких сотен — всего лишь два десятка основных элементов. При этом почти треть их еще экспериментально не открыта. Однако без них не удается построить последовательной теории — она рассыпается. Но, с другой стороны, и два десятка, а точнее 19 «самых элементарных»,— это многовато. И почему, собственно, 19, а не 14 или, скажем, не 27? Невольно возникает подозрение, что эти «первоэлементы» не все независимы и число их, наверное, можно еще уменьшить.

Правда, на первый взгляд это просто невозможно — уж очень сильно различаются по своим свойствам эти девятнадцать. Например, электрон — это частица, которая может иметь любую скорость, быть и быстрой, и медленной, а вот фотон или нейтрино всегда летят с скоростью света. Массы частиц и силы, с которыми он взаимодействуют, различаются в сотни и тысячи раз; Казалось бы, ничего общего.

И тем не менее некоторые из этих частиц могут оказаться родными братьями и сестрами. Хотя это пока — чистая теория, как шутят физики,— из области фантастики и, может быть, даже не совсем научной.

Несколько лет назад известный пакистанский физик Абдус Салам (он возглавляет Международный институт Теоретической физики в Триесте), и английский физик Джордж Пати выдвинули смелую гипотезу о том, что лептоны — не самостоятельные частицы, а всего лишь четвертое цветное состояние кварка. Их не смутило, что свойства частиц, объединенных ими в кварк, различаются столь сильно. Они полагали, что это всего-навсего результат влияния окружающего фона. Ведь согласно современным представлениям каждая частица играет роль как бы затравочного центра, вокруг которого образуется облако спонтанно рождающихся и быстро исчезающих частиц. Это облако экранирует частицу изменяет ее свойства. Такие заэкранированные, закутанные в облако частицы с измененными или, как говорят эффективными свойствами, мы всегда и наблюдаем в опытах. Невозможно ведь изолировать частицу от взаимодействия со средой, даже если это глубокий вакуум. Ничто на свете не существует само по себе, и «голый» квант в том числе.

Теперь мы подходим к самому трудному. Мы видим, что каждая микрочастица — это сложная корпускулярно-волновая структура. Ее плотность и состав зависят от заряда и других характеристик. Поэтому у одного состояния частицы одна масса, у другого — другая. Возникает разница и в силе взаимодействия. Состояния частицы «расщепляются» по массе и взаимодействию. Одни состояния становятся очень легкими, другие — тяжелыми, и исходное взаимодействие «голой» (абстракция!) частицы распадается на три — на слабое, электромагнитное и сильное.

Можно сказать, что в своих различных состояниях квант универсального «склеивающего» поля носит «шубы» различного покроя. В одних случаях «шуба» очень тяжелая, и тогда облачившийся в нее квант переносит взаимодействие лишь на ультрамалые расстояния. Далеко от центра частицы такие кванты почти не встречаются, и связанное с ними взаимодействие проявляется там очень слабо. В других случаях кванты набрасывают па себя легкую «шубу», и тогда они способны участвовать во взаимодействии на больших расстояниях.

Влияние фона спонтанно рождающихся частиц может быть настолько сильным, что на энергию связи и различные компенсирующие эффекты уходит целиком вся масса «голого» кванта. Надев «шубу», он становится «бестелесной» частицей с нулевой массой. Так возникает фотон и связанные с ним дальнодействующие электромагнитные силы.

Как не вспомнить здесь Корнея Чуковского, у которого «волки от испуга скушали друг друга», или известную шутку о том, как змея сама себя проглотила!

Почему так происходит — это сложный вопрос. Даже для специалистов-теоретиков здесь еще не все ясно. Можно только сказать, что в теории Салама и Пати для этого требуется, чтобы экранирующие облака кварков содержали шесть частиц, каждая из которых, в свою очередь, окутана облаком виртуальных частиц, состоящих из тех же частиц и... пар кварков и антикварков.

И опять, только на более глубоком «ультраэлементарном» уровне, мы приходим к самосогласованной, «зашнурованной» системе частиц, когда любая из них содержит в себе все сорта частиц, в том числе и себя самое. Складывается впечатление, что в этом проявляется какая-то общая закономерность, свойственная микромиру.

Что касается шести частиц, из которых сшита «шуба» кварка, то три из них — многокомпонентные глюоны. Из них «склеен» и фотон. В теории Салама и Пати фотон — не самостоятельная частица, а сложное «наложение», суперпозиция нескольких нейтральных состояний глюонов. Весьма неожиданный вывод! Три другие частицы в «шубе» кварка называются хиггсонами — по имени английского физика Хиггса, который первым начал разрабатывать теорию таких частиц. Это уж совсем необычные объекты даже для притерпевшихся ко всему теоретиков. От хиггсонов зависят свойства вакуума.

Оказывается, и вакуум, то есть, по нашим традиционным представлениям, ничто, пустота, может пребывать и различных состояниях, подобно тому как, скажем, углерод может быть в состоянии графита или в состоянии алмаза. Но как же это, ведь вакуум — это «чистое пространство»? Обстоятельный ответ на этот вопрос увел бы нас далеко в квантовую теорию поля — один из самых сложных разделов современной физики. Сейчас нам важно просто знать, что между состояниями вакуума нет переходов; во всяком случае, мы не знаем, как они выглядят, но знаем, что любое из этих состояний может служить основой Вселенной. А то или иное состояние вакуума как раз и определяют поля частиц Хиггса.

Мы не знаем пока ни массы, ни других свойств этих частиц — все это зависит от варианта пока еще не завершенной и развивающейся теории. Даже число хиггсонов изменяется от одного варианта теории к другому. Что требуется обязательно, так это то, чтобы эти частицы могли взаимодействовать между собой напрямую — без посредничества частиц других типов. Такое «самодействие» и образует основной «уровень мира»—его вакуум. Физикам это напоминает прозрачный эфемерный студень неодинаковой густоты.

Может быть, поля Хиггса являются всего лишь приблизительным, модельным описанием на слишком привычном для нас языке каких-то глубоких и еще не понятых нами свойств природы? Ведь все попытки найти реальные частицы Хиггса пока безрезультатны. Впрочем, здесь нам стоит остановиться, иначе мы рискуем запутаться в дебрях теоретических схем и гипотез тем более что они, прямо скажем, еще весьма неопределенны и неоднозначны.

Теория Салама и Пати была одной из самых первых — разведкой в неведомую еще область. Она дала общее представление о том, что нас там ожидает, обнаружила первые подводные камни, наметила пути. Но сегодня физики отдают предпочтение уже другим, более совершенным версиям. Гёте говаривал: смелые мысли подобны вырвавшимся вперед шашкам в игре. Они гибнут, но обеспечивают победу. Их можно сравнить также, с семенами, из которых вырастает дерево теории. Высказать верную идею часто означает — определить развитие науки на много лет вперед, хотя потом, с высоты развившейся теории, эта идея выглядит иногда чересчур наивной и простой.

В последние годы испробованы «на прочность» многие варианты теорий, объединяющих кварки и лептоны. Одни из них похожи на теорию Салама и Пати, другие, напротив, сильно отличаются от нее как числом частиц, тик и их свойствами. Но их всех объединяет идея о расщепленном взаимодействии. Пока трудно сказать, какой подход наилучший. Физикам предстоит еще очень много работы — горы расчетов, бесчисленная их проверка в опытах. Но, как говорится, лед тронулся, и перед нами псе отчетливее проступают контуры будущей теории.

Сто лет назад английский физик Джеймс Максвелл объединил три казавшиеся тогда совершенно не связанными между собой явления: свет, электричество и магнетизм. Возникла электромагнитная теория, принесшая нам и радио, и телевидение, и вычислительные машины, и прочие чудеса электроники. И вот теперь выясняется, что теория Максвелла — лишь частный случай более общей теории. Какие же фантастические возможности откроет нам новая теория!

Возможно, некоторым скептически настроенным читателям разговоры о новой теории покажутся чем-то вроде гадания на кофейной гуще. Какой смысл спорить о достоинствах того или иного варианта теории для частиц, которые сами еще под вопросом? Ведь ни кварков, ни глюонов никто никогда еще не видел. Физики, да и все ученые всегда говорили, что высший судья для них — опыт, но его-то как раз здесь и нет. Как же узнать, верна или нет новая теория?

Действительно, «великое объединение» взаимодействий — электромагнитного, слабого и сильного — долго не принимали всерьез даже многие из физиков. Масса темных мест, плохо обоснованных предложений и ничтожное количество экспериментальных данных. Все это было... Первый серьезный успех, заставивший поверить в новую теорию, был достигнут в начале 70-х годов, когда удалось найти согласующийся с опытом вариант теории, объединивший силы двух типов — электромагнитные и слабые. Одним из авторов этой теории был уже известный нам Абдус Салам, двое других — американцы Стив Вайнберг и Шелдон Глешоу. За это достижение несколько лет назад им была присуждена Нобелевская премия. В их теории взаимодействия передаются квантами, имеющими четыре различных состояния. В одном из них квант имеет нулевую массу — это всем хорошо известный фотон; три других состояния, наоборот, очень массивные — почти в 100 раз тяжелее протона. Обмен такими квантами, например, между электроном и нейтрино возможен лишь на очень маленьких расстояниях — 1000 раз меньше размеров протона. Там слабые взаимодействия становятся сильными.

Недавно тяжелые кванты (их называют Z- и W-мезонами) были обнаружены в эксперименте, проведенном в Международном центре ядерных исследований в Женеве. Их рождение было замечено в столкновениях разогнанных до очень высоких энергий протонов и антипротонов. В лобовых столкновениях таких частиц происходит почти мгновенное выделение огромной энергии, за счет которой и рождаются тяжелые кванты. Экспериментаторам, которые этим своим открытием доказали, что теоретики идут по правильному пути, тоже была присуждена Нобелевская премия.

Как видите, современные физические теории — это далеко не гадание на кофейной гуще.

Теперь перед физикой стоит задача добавить к объединенному «электрослабому» взаимодействию еще и сильное — объединить три взаимодействия из четырех на которых держится мир. Для этого нужно найти недостающие состояния кванта промежуточного поля — выяснить, сколько их, таких состояний, какие у них массы, заряды и все прочие характеристики. Работы много! Понятно, что, если искать простым перебором вариантов или, как еще говорят, методом проб и ошибок, наугад выбирая значения параметров, задача долго останется нерешенной. Особенно если учесть, что опыты стали очень трудными и дорогими. Нужна руководящая идея.

Роль такой идеи сегодня играют законы симметрий. Об этом стоит рассказать подробнее.

Свою теорию симметрий французский ученый Эварист Галуа написал в ночь накануне дуэли. Ему шел всего лишь двадцать первый год. Неудачи преследовали юношу. Первую его математическую работу напечатали когда ему было семнадцать лет, но в тот же год он провалился на вступительном экзамене по математике в Политехническом институте. Он послал свои работы знаменитым математикам Коши и Фурье, но Коши его статьи потерял, а Фурье неожиданно умер, не успев прочитать. С большим трудом Галуа удалось поступить в Высшую педагогическую школу — учебное заведение значительно низшее по уровню, чем Политехнический институт. Но и оттуда, он был вскоре исключен за недозволенную властями политическую деятельность. Рассказывали, что однажды во время банкета с гвардейскими офицерами он произнес тост за здоровье короля Луи Филиппа, но тут же выхватил кинжал и энергичным жестом показал, что следовало бы сделать с его величеством... Многие были убеждены, что дуэль была спровоцирована сторонниками короля, и страстный республиканец Галуа был убит наемным убийцей.

Произошло это сто пятьдесят лет назад. Сегодня теория симметрий Галуа — один из краеугольных камней математики и теоретической физики. На ее основе по нескольким известным семействам частиц, мультиплетам, можно установить связывающие их правила симметрии и вычислить все другие мультиплеты. В свое время она помогла предсказать существование кварков; теперь она используется для испытания кандидатов на роль многокомпонентного промежуточного кванта в теории «великого объединения».

Установлено, что каждому типу симметрии отвечает определенный квант-мультиплет, и вместо перебора всех возможных случаев следует изучать лишь те, которые соответствуют этим симметриям. Задача, естественно, сильно упрощается, хотя и после этого она остается еще очень трудной — ведь типов симметрии много. Например, симметрии круга и шара, вращения и отражения в многомерных пространствах и так далее. Чем больше параметров требуется для описания частицы, тем более сложной и многоплановой становится симметрия.

Как тесно все переплелось в нашем мире! Абстрактные кварки и хрупкое кружево снежинок (тоже симметрия!). Физика и художника волнуют одни и те же законы...

Пока ни теоретики, ни экспериментаторы точно не знают, из каких частиц складывается мультиплет, ответственный за перенос единого взаимодействия. У каждого свой излюбленный вариант «великого объединения». Однако все согласны в том, что среди этих частиц непременно должен быть безмассовый, похожий на фотон глюон, который связывает цветные заряды кварков. Это как бы «цветной электромагнетизм». Там должны быть также частицы — переносчики взаимодействий между лептонами и кварками. Большинство моделей «великого объединения» предсказывают для этих частиц очень большие массы — приблизительно в 100 триллионов раз больше, чем у протона. Так много весит уже видимая глазом пылинка. Чтобы получить энергию, необходимую для рождения подобных частиц, пришлось бы построить ускоритель длиной в целый световой год! От Солнца до Земли свет пробегает всего за 8 минут, а тут бежал бы целый год. Представляете себе, какой длины был бы этот ускоритель!

Энергии космических лучей тоже не хватит для рождения сверхтяжелых квантов. Даже у самых быстрых из них энергия в 100 раз меньше той, которая была бы нужна.

Но все это не означает, что сверхтяжелые кванты никогда не будут открыты и что «великое объединение» навсегда останется недоказанной гипотезой. Чтобы убедиться в существовании предсказываемых теорией сверхтяжелых частиц, совсем не обязательно строить фантастический ускоритель. Это можно сделать косвенным способом. Сверхтяжелые кванты рождаются где-то глубоко в недрах нуклонов, мезонов и других частиц. На очень короткое время это, как доказывают физики квантовыми законами разрешается. И вот там, взаимодействуя со сверхтяжелым квантом, кварк может превратиться в лептон. Частица, внутри которой произошло такое превращение, сразу же распадается, так как частиц, состоящих из смеси лептонов и кварков, не бывает. Поэтому, если удастся обнаружить радиоактивный распад протона, который вне рамок «великого объединения» абсолютно устойчив, это будет убедительным подтверждением идеи такого объединения и связанных с нею сверхтяжелых квантов.

Вместе с тем это будет означать, что все атомы радиоактивны и с течением времени вся наша Вселенная прекратит свое существование — распадется. Произойдет это, правда, не скоро, так что волноваться по этому поводу нечего. Согласно расчетам, один распад протона в стакане воды происходит не чаще чем за 10 тысяч лет. Вселенная наша существует около 20 миллиардов лет. За это время внутри объема, равного земному шару, успело распасться всего около 100 тонн, или, иными словами, 10-18 процентов всего известного нам вещества Вселенной.

Заметить распад протона все равно, что найти иголку в стоге сена. Распад протона пытаются обнаружить по вспышкам света в прозрачной жидкости. Такая вспышка может быть результатом аннигиляции: позитрон столкнется с атомарным электроном, и образуются два кванта света. Измерения проводят глубоко под землей, чтобы толстый слой почвы поглотил мешающие измерениям космические лучи, и с огромными мишенями — целыми бассейнами прозрачной жидкости. Здесь все гигантское и все на пределе современных технических возможностей. Несколько раз на совещаниях физиков объявлялось, что в такой-то лаборатории наконец зарегистрировали долгожданный сигнал от распада протона. Но доказательства, увы, были не бесспорны, так что с полной уверенностью сказать, что распад протона наблюдался, нельзя. Тем не менее физики надежды не теряют. Они убеждены даже, что «великое объединение» — это не предел. Теоретики размышляют над более грандиозной программой — над «суперобъединением» всех известных сил природы: электромагнитных, слабых, сильных и гравитационных. Вот было бы поистине великое, нет — величайшее объединение!

Одним из первых идею «суперобъединения» выдвинул харьковский теоретик Дмитрий Васильевич Волков и его сотрудники. На окраине Харькова, в лесном массиве, расположены ускоритель электронов и научный городок Пятихатки. Вот там и родилась эта замечательная идея. Правда, как это часто бывает в науке, сходные мысли были высказаны и другими физиками — Ю. Ф. Гольфандом в Физическом институте имени П. Лебедева в Москве, а также И. Вейсом и Б. Зумино в Женеве. В современном мире, где происходит быстрый обмен информацией, новые идеи часто витают в воздухе.

В математическом отношении новая теория чрезвычайно сложна. Гросмановы числа, произведение которых зависит от порядка сомножителей, спиноры и спинтензоры, теория групп, весь аппарат современной дифференциальной геометрии... Но физический смысл теории прозрачен. Все элементарные частицы, в том числе и «суперэлементарные» кварки и глюоны, теория делит на два больших разряда: бозоны и фермионы. Отличительным признаком служит величина спина. Дело в том, что микрочастицы ведут себя подобно быстро вращающимся полчкам, а у каждого волчка есть момент количества движения. Это и есть спин. Частицы, у которых спин — дробная величина, называют фермионами, а у которых целое число — бозонами. Происходят эти термины от фамилий итальянского физика Ферми и индийского теоретика Бозе, которые первыми изучили зависимость свойств частиц от их спинов. К фермионам принадлежат кварки, протон, нейтрон, электрон, нейтрино и все другие лептоны, а также многие странные частицы. В разряд бозонов входит пи-мезон (его спин равен нулю, поэтому можно сказать, что это невращающаяся частица), а так же омега- и ро-мезоны и множество других короткоживущих частиц.

Так вот, идея суперобъединения, или суперсимметрии заключается в предположении, что у каждого бозона обязательно есть партнер-фермион, а у фермиона — бозон. Иначе говоря, при перестановке бозонных и фермионных частиц физические законы остаются неизменными (зеркально симметричными).

Мультиплеты такой теории объединяют частицы с разными спинами: кварки и лептоны, глюоны, фотон, гравитон и не найденные еще на опыте их суперсимметричные партнеры. «Многогранные» частицы-мультиплеты становятся очень сложными, их «компоненты-грани») могут быть частицами вещества и частицами — переносчиками взаимодействий.

Такое всеобъемлющее объединение частиц и полей по-видимому, действительно происходит на ультрамалых расстояниях порядка 10-33 сантиметров. Расстояния эти намного меньше тех, которые можно прощупать с помощью ускорителей. Но можно рассчитывать на то, что отголоски суперобъединения обнаружатся где-то в глубинах Вселенной, развитие и строение которой зависят от того, что творилось в ней в первые мгновения после ее рождения, когда она была меньше любой самой маленькой элементарной частицы. Об этом событии мы еще подробно поговорим в последующих главах.

Среди предсказаний новой теории одно из наиболее интересных — гипотеза о новом виде гравитации, о неизвестном до сих пор варианте всемирного тяготения. Его квантами-переносчиками служат гравитино — фермионные партнеры «обычных», известных нам, бозонных гравитонов. Расчеты показывают, что в отличие от гравитона, являющегося безмассовой частицей, гравитино весит раз в 100 больше протона. Существует ли в природе такая «тяжелая гравитация»? Открытие гравитино будет хорошим доказательством правильности идеи суперсимметрии.

Другое важное следствие анализа различных вариантов суперсимметричной теории элементарных частиц — гипотеза о составной природе кварков. Кванты суперсимметричного поля стали настолько сложными и многокомпонентными объектами, а их физические свойства — настолько разнообразными, что это само по себе наводит на мысль: не состоят ли кварки, глюоны и их компоненты из каких-то более мелких и простых частичек, принадлежащих следующему, «закварковому» уровню материи?

Что это за частицы, можно лишь гадать. Никаких экспериментальных данных об этом пока нет. Тем не менее теоретики уже создают и исследуют различные схемы с составными кварками. В одной из них кварки состоят из двух «пракварков», один из которых напоминает мезон, а второй по своим свойствам похож на электрон и имеет античастицу. Разработана схема, в которой кварки состоят из трех электроноподобных пракварков. Некоторые теоретики считают, что частями кварков могут быть протяженные объекты, похожие на тонкие длинные змейки или вибрирующие струны, с размерами порядка 10-33 сантиметров. Эти «змейки» похожи на хромосомы в клетках организмов. При столкновении кварков их «хромосомы» могут сливаться, скрещиваться и распадаться, образуя новые «хромосомы». В соответствии с идеей суперсимметрии они сочетают в себе свойства бозонов и фермионов. Изучение гипотетических «змеек-струн» — сегодня одно из основных направлений физики элементарных частиц.

Но все это — гипотезы. Что происходит на самом деле в области сверхмалых расстояний, сказать пока трудно. Суперобъединение переживает еще младенческую пору своей жизни. Пока это область теоретической фантазии, где вопросов и загадок намного больше, чем разгадок и ответов. Целый мир абстрактных образов! И благодатное поле для самых смелых предположений.

Теория в современной физике занимает исключительное место. Она строит мосты между островками разрозненных экспериментальных фактов и путем экстраполяции позволяет далеко уходить от них в область неизвестного.

Фиолетовые руки

на эмалевой стене

полусонно чертят звуки

в звонко-звучной тишине...

Эти знаменитые строки Валерия Брюсова невольно приходят в голову, когда глядишь на черные доски с узором затейливых формул, понятных лишь небольшом кругу посвященных... И в то же время, как мы все давно знаем, нет ничего практичнее хорошей теории!

Когда-то, лет 25 назад, на киноэкранах и на страницах книг появился образ физика-теоретика, этакого элегантного острослова, немного чудаковатого, немного резкого, утопающего, вытянув ноги, в современных мягких креслах или разгуливающего по бесконечным коридорам в окружении почтительно внимающих ему коллег экспериментаторов. Как же это все устарело! Да и было ли верно? Остроумный или просто умный — да, разумеется. Чудаковатый? Возможно. Но элегантный — нет. Элегантность нуждается в заботах и уходе, а у теоретика нет и никогда не было времени. Ни на поддержание элегантности, ни на праздное утопание в креслах. У него нет «нерабочего времени»! Физическая задача сродни головоломке — все становится простым, когда найдется «ключик». И мозг теоретика постоянно занят поискам этого «ключика» — за столом в рабочем кабинете, во время обеда, по дороге на работу и домой. Попытка за попыткой... И каждую догадку надо проверить расчетом. Растет стопка густо исписанных формулами и цифрам листов. И все не так, все напрасно... Не зря говорят, что теоретик работает в основном на корзину. Тяжелый неблагодарный труд, где озарения так редки. Но зато какие это бывают озарения!

Особой любовью у теоретиков пользуются «трепы» —шумные споры за стаканом чая или просто у окна в коридоре. Здесь можно услышать о последнем номере японского «Прогресса теоретической физики», о сенсационном фильме, о новом типе диаграмм, которые при думал стажер из четвертого сектора... Нередко долгожданная идея рождается тут же, у окна, в оживленной беседе. Неожиданный поворот мысли собеседника, упоминание о похожем случае, какие-то ассоциации — и вдруг ясно видите решение, над которым бились несколько дней.

Когда в Дубне строился новый корпус для теоретиков, Д. И. Блохинцев — он был в то время директором дубненского института — настоял на том, чтобы там была устроена специальная комната для «теортрепов», с самоваром, удобными креслами и большой черной доской во всю стену.

«Пусть говорят и спорят вволю, это себя окупит,— успокаивал он особенно ретивых администраторов, которым казалось, что теоретики слишком много времени проводят за разговорами. — Теоретик в современном институте — все равно что астролог при королевском дворе: он поднимает уровень дворцовой свиты!»

И слова его полностью оправдались...

Итак, казалось бы, «суперобъединение» четырех фундаментальных сил природы позволит рассчитать и объяснить любое физическое явление. Несколько уравнений, из которых можно вывести весь мир! И физику, и химию, и биологию, даже психологию — ведь в конечном счете в ее основе тоже лежат материальные, вещественные процессы. Тем самым будет достигнута основная цель науки, и ученым останется лишь применять раз и навсегда установленные законы природы к решению конкретных практических задач. Нужно будет только разложить изучаемое явление на более простые — и любая задача решена. Никаких больше тайн и загадок!

В одной из своих статей президент американской Ассоциации содействия науке А. Глэсс так и говорил: великие концепции, фундаментальные механизмы и основные законы природы теперь уже известны, остается, конечно, еще уточнить множество деталей, но бесконечных горизонтов науки больше не существует. Подобные высказывания о неизбежном конце фундаментальной науки, о постепенном сведении всех исследований к чисто прикладным в последнее время замелькали не только на страницах научно-популярных, но и специальных научных изданий.

С этим, однако, никак нельзя согласиться. Природа неисчерпаема, а посему, какой бы совершенной ни была теория, всегда найдутся явления, выходящие за ее рамки. Построить окончательную, всеобъемлющую теорию не удастся никогда.

Конечно, читатель может спросить автора: а откуда мы знаем, конечна в своем качественном разнообразии природа или бесконечна? Где у нас доказательства как того, так и другого? Например, Станислав Лем в примечаниях, написанных им специально для русского издания его книги «Сумма технологии», высказывает опасение, что «просто так», безоговорочно допустить бесконечность окружающего мира — дело весьма рискованное. Слишком уж коротка история человечества, чтобы этот вывод можно было считать твердо установленной истиной. По мнению Лема, может случиться так, что познание очень большого числа фактов и связей между ними приведет к своеобразным «высям познания», после чего число вопросов, не имеющих ответа начнет уменьшаться. Аналогичные мысли высказывает в своей книге «Характер физических законов» известный американский физик-теоретик Ричард Фейнман. Он тоже не исключает того, что может наступить время, когда мы будем иметь ответ сначала на 99 процентов вопросов, которые мы задаем природе, потом на 99,9, потом на 99,99 процента, после чего исследования потеряют смысл, так как мы будем знать уже практически все.

В конце концов — почему бы нет?

И действительно, физикам уже не раз казалось, что они почти достигли полного понимания законов природы, неясности касались лишь деталей. Но каждый раз получалось так, что избавиться от этого «почти» и создать полную, совершенно законченную и абсолютно непротиворечивую теорию не удается. Всегда оставались вопросы, которые упорно не находили ответа. Они превращались в парадоксы, в проблемы, а из них в конечном счете возникала новая теория. В самом конце XIX века физик Филипп, фон Жолли, учитель Макса Планка, говорил своему ученику: «Конечно, в том или ином уголке еще можно заметить или удалить пылинку, но система как целое стоит прочно, и теоретическая физика приближается к той степени совершенства, каким уже столетия обладает геометрия. Так что не советую вам тратить на нее время».

Сходные мысли по поводу основ математики высказывал Анри Пуанкаре, самый в ту пору авторитетный и талантливый математик.

И вот прошло всего несколько лет, и Макс Планк открыл ворота в необозримый мир квантовых явлений, а «царица наук» математика сотрясалась от глубоких противоречий, которые обнаружились в ее основах и которые до конца не устранены и по сей день.

В создаваемой физиками теории суперобъединения тоже немало вопросов, не имеющих ответа. Неясно, например, чем определяется величина скорости света, заряд электрона и другие мировые константы. Почему они именно такие, какие есть, а не иные? Что будет представлять собой грядущая «заквантовая» теория, которая, может быть, сумеет наглядно объяснить нам, что же в конце концов размазывает траектории квантовых частичек, когда они движутся в полной пустоте? И так далее.

Любая теория, какой бы общей она ни была, всегда содержит некоторые исходные положения, аксиомы или просто константы, которые не выводятся внутри данной теории, а задаются извне заранее, на основе анализа и обобщения опытных данных. Абсолютной, замкнутой самой в себе теории быть не может. Свое обоснование она может получить лишь в рамках более общего теоретического построения, которое, в свою очередь, получит определение в еще более общей теории. Этот ряд не имеет конца, и, как показывает опыт, число фундаментальных вопросов, возникающих в процессе развития науки, не только не уменьшается, как это предположил Фейнман, а, наоборот, становится все больше и больше. Можно сказать, что периметр, по которому наука соприкасается с областью неизвестного, все время удлиняется.

Как метко заметил однажды французский ученый Пьер Буаст, пределы наук похожи на горизонт: чем ближе подходят к ним, тем дальше они отодвигаются.

Более того, даже уже созданные, хорошо разработанные теории и те постоянно в движении — они видоизменяются, совершенствуются. Книги, популяризирующие нынешнее состояние знаний, скажем, в области физики, и притом лучшие из них, часто представляют дело так, как будто существуют две четко отделенные друг от друга области: область того, что наукой раз и навсегда установлено, и того, что еще до конца не выяснено. Представьте себе, что вы находитесь в волшебном, великолепном дворце, где то тут, то там лежат на столах таинственные головоломки. Вы покидаете дворец с уверенностью, что эти головоломки рано или поздно будут решены — в этом убеждает вас великолепие и стройность дворца и его покоев. И у вас даже не мелькнет и мысли, что решение этих головоломок может привести к разрушению половины здания. Притчу эту придумал тот же Лем в «Сумме технологии», и она очень точно характеризует процесс становления науки. Неизменной остается лишь задняя, тыловая часть здания, а фасад его всегда в лесах. Иногда это готический храм, поражающий строгостью своих линий, а иногда нечто конструктивистское, в духе домов-шестеренок 30-х годов... Впрочем, на что это похоже, не так важно — важно, что в вечной переделке, в лесах.