Ядерные реакции и электрический заряд
Ядерные реакции и электрический заряд
Когда в 90-х годах прошлого века физики стали яснее представлять себе структуру атома, они обнаружили, что, по крайней мере, некоторые его части несут электрический заряд. Например, электроны, заполняющие внешние области атома, заряжены отрицательно, а ядро в центре атома несет положительный электрический заряд. Конечно, сразу же возник вопрос о величине этих зарядов, прежде чем ответить, рассмотрим некоторые единицы заряда.
Общепринятой единицей электрического заряда является кулон (по имени французского физика Шарля Огюстена Кулона, определившего в 1785 году величину электрического заряда по измеренной силе притяжения и отталкивания его другими зарядами). В 60-ваттной лампочке каждые две секунды через любую точку нити накала проходит электрический заряд в один кулон. Гораздо меньше электростатическая единица заряда. Кулон равен 3·109 электростатических единиц.
Но даже электростатическая единица чрезвычайно велика для измерения заряда одного электрона. Впервые с достаточной точностью заряд электрона измерил в 1911 году американский физик Роберт Эндрюс Милликен. Он оказался равным примерно половине миллиардной доли электростатической единицы. Согласно последним измерениям, заряд электрона составляет 4,80298·10-10 электростатических единиц. Чтобы не пользоваться такой неудобной дробью, приняли электрический заряд электрона равным —1, где знак минус означает отрицательный заряд. Любой электрон, участвует ли он в электрическом токе или принадлежит атому какого-либо элемента, имеет заряд, точно равный -1, независимо от точности наших самых чувствительных инструментов.
Простейшее атомное ядро, т. е. ядро атома водорода имеет электрический заряд +1. Насколько позволяют судить наиболее чувствительные приборы, положительный заряд ядра водорода точно равен отрицательному заряду электрона (хотя, конечно, противоположен по знаку). Более тяжелые атомные ядра имеют большие положительные заряды, которые обязательно выражаются целым числом. До сих пор, по крайней мере, не обнаружили какого-либо дробного заряда, положительного или отрицательного.
Атомы каждого элемента имеют характерный ядерный заряд, отличный от заряда атомов других элементов. Например, все атомы водорода имеют ядерный заряд +1, все атомы гелия +2, все атомы углерода +6, все атомы урана +92. Этот ядерный заряд называется атомным номером.
Изотопы отличаются друг от друга массовым числами, но тем не менее они идентичны по атомному номеру и являются атомами одного и того же элемента. Существуют как атомы с ядерным зарядом +1 и массовым числом 1, так и атомы с ядерным зарядом +1 и массовым числом 2. Оба типа относятся к атомам водорода. Их называют водород-1 или водород-2, или 1Н1и 1H2, где индекс вверху справа — массовое число, индекс внизу слева— атомный номер. Таким же образом два изотопа урана записывают 92U238 и92U235.
Поскольку речь дальше будет идти о сохранении электрического заряда, я буду подчеркивать его количество, обозначая любой изотоп атома урана как U+92.
Оба изотопа урана радиоактивны. Каждый распадается, излучая ?-частицу и превращаясь в атом тория. Атомный номер тория 90, а ?-частица, являющаяся ядром атома гелия, имеет атомный номер 2. Тогда можно записать:
U+92? Th+90 + He+2.
Начальное атомное ядро имело заряд +92, а два конечных ядра +90 и +2, т. е. в общей сложности +92. Это частный случай общего правила. Атом с атом номером х, излучив ?-частицу, всегда превращается в другой атом с атомным номером х—2. Исключений никогда не наблюдали. Следовательно, в случае излучения ?-частицы закон сохранения электрического заряда выполняется.
Применим ли закон сохранения электрического заряда к излучению атомным ядром ?-частицы? Эта частица представляет собой электрон, который обозначается e-1, так как электрон имеет заряд -1.
Рассмотрим далее поведение изотопов тория, образовавшихся при распаде урана. Они не очень распространены в природе, поскольку, в свою очередь, быстро распадаются. При этом излучается ?-частица и образуется изотоп элемента протактиния, который имеет атомный номер 91 и обозначается символом Ра. Сосредоточив внимание на электрическом заряде, можно записать
Th+90 ? Pa+91 + e-1.
Снова наблюдаем сохранение электрических зарядов.
Атом с атомным числом х, излучив ?-частицу, всегда превращается в другой атом с атомным числом х+1. Исключений из этого правила также не наблюдали. Значит, закон сохранения электрического заряда справедлив и для излучения ?-частицы.
Атом, излучающий ?-лучи, не меняет в процессе излучения атомного номера, так как фотон ?-лучей не несет заряда.
Короче говоря, оказалось, что закон сохранения электрического заряда выполняется при любой ядерной реакции.