Глава 11. Мюоны
Глава 11. Мюоны
Открытие мезона
Пока обменные частицы не найдены и их существование не продемонстрировано каким-либо образом, они остаются не более чем теоретическим вымыслом. Мы знаем, что виртуальная частица остается виртуальной толь-ко потому, что системе, из которой она возникает, не хватает энергии, чтобы сделать ее реальной. Если же системе сообщить энергию, которая превратилась бы в массу частицы, последняя находилась бы тогда вне сферы действия принципа неопределенности, и ее можно было бы обнаружить. Однако для этого атомному ядру необходимо сообщить по крайней мере 125 Мэв, а в начале 30-х годов получать такие энергии еще не умели. В то время единственным источником больших энергий были космические лучи, бомбардирующие Землю из межпланетного пространства. Энергия некоторых космических частиц достигает сотен и миллиардов мегаэлектронвольт. (Максимальные энергии космических частиц остаются недостижимыми даже сейчас, когда построены огромные ускорители, способные создавать пучки субатомных частиц с энергиями 30 000 Мэв и выше.)
Теперь известно, что частицы космических лучей представляют собой голые атомные ядра, которые медленно ускоряются за время своего длинного путешествия через межзвездное пространство (по-видимому, за счет переменных магнитных полей звезд и галактик). (Поскольку вещество Вселенной состоит в основном из водорода и гелия, не удивительно, что космические лучи содержат приблизительно 78 % протонов (ядра водорода), 20 % ?-частиц (ядра гелия) и 2 % более тяжелых ядер.
Положительно заряженные ядра представляют собой первичное излучение. Когда частицы первичного излучения попадают в атмосферу Земли, их огромные энергии приводят к ряду изменений в ядрах, с которыми они сталкиваются. Из ядер выбиваются быстрые частицы, образующие вторичное излучение. Было бы не удивительно, если бы вторичное излучение состояло из быстрых электронов и фотонов большой энергии, но некоторые свойства этого излучения свидетельствуют против.
Физики, исследовавшие космические лучи в начале 30-х годов, строили догадки (совершенно независимо от теории ядерного поля Юкавы) о существовании частиц тяжелее электрона, но легче протона. Такие частицы с промежуточной массой были нужны для объяснения данных, полученных в процессе исследования космических лучей. В 1935 году, вскоре после того, как была опубликована теория Юкавы, Андерсон (который тремя годами раньше открыл позитрон) занимался исследованием космических лучей на Пайк-Пике (штат Колорадо). В следующем году, изучая полученные фотографии, он обнаружил треки с кривизной, которую следовало бы ожидать от частиц с промежуточной массой. Частица оказалась приблизительно в 207 раз тяжелее электрона. Андерсон назвал ее мезотроном, от греческого слова mesos, что означает промежуточный, но название быстро сократили до слова мезон, которое и стало общепринятым.
Вначале думали, что частица Андерсона является обменной частицей Юкавы, хотя масса ее была меньше, чем предсказывал Юкава. К сожалению, данные противоречили этому. Сама природа ядерного поля предполагала что обменная частица Юкавы должна очень интенсивно и быстро взаимодействовать с любым нуклоном, встречающимся на ее пути. Поэтому она не сможет глубоко проникнуть в вещество, так как первое же встречное ядро поглотит ее. Однако оказалось, что частица Андерсона легко проникает в вещество, проходя, например, сквозь слой свинца значительной толщины. При этом она сталкивается со многими ядрами и не поглощается ими, значит, она не является ядерной обменной частицей.
Горечь разочарования исчезла в 1948 году благодаря работе группы английских физиков, возглавляемой Сеслом Фрэнком Пауэллом, которая изучала космические лучи на больших высотах в Боливийских Андах. Они зарегистрировали частицы, более тяжелые, чем мезоны Андерсона, частицы, имеющие массу приблизительно в 270 раз больше массы электрона.
Новая частица обладала массой, близкой к предсказанной Юкавой, и достаточно интенсивно взаимодействовала с веществом. Ядерной обменной частицей оказался мезон Пауэлла, а не Андерсона. Так была подтверждена теория Юкавы и доказано существование ядерного поля.
Пауэлл назвал свою частицу ?-мезоном, а частица Андерсона — первый открытый мезон — впоследствии была названа ?-мезоном.
Со времен были открыты другие типы мезонов и стало очевидно, что все субатомные частицы можно разделить на три группы, а не на две. Кроме лептонов и барионов появились мезоны.