Поглощение сернистого газа и получение сырой кислоты
До недавнего времени для варки сульфитной целлюлозы применяли кислоту только на кальциевом основании. Существовало два способа получения сырой кислоты: турменный и известково-молочный. В настоящее время все большее значение приобретают другие виды основания — магниевое, натриевое, аммониевое, которые применяются в чистом виде или в смеси с кальциевым основанием В основе приготовления сырой кислоты любого состава и с любым видом основания лежит процесс абсорбции.
Абсорбция — это процесс поглощения газа за счет проникновения его в массу жидкости, в результате чего происходит образование раствора определенного состава.
При соприкосновении газа с жидкостью часть молекул газа растворяется в ней, а затем частично выделяется обратно в газовую фазу, При этом через некоторое время количество молекул, переходящих в жидкость и возвращающихся в газовую фазу, становится одинаковым. Такое положение называется состоянием равновесия. Содержанию растворенного газа в жидкости при данной температуре соответствует определенное содержание его в газовой фазе, которое называется парциальным давлением.
Парциальное давление газа над жидкостью выражается обычно в мм рт. ст. или в ата и составляет часть общего давления над данным раствором. Следовательно, на процесс абсорбции газа жидкостью влияют два основных фактора — парциальное давление и температура, меняя которые можно регулировать состав раствора.
Таким образом, если печной газ с определенным содержанием сернистого ангидрида в нем С% и под некоторым давлением p мм рт. ст. вступает в соприкосновение с водой, имеющей температуру t°С, растворимость газа в воде X определяется по формуле Гумма, как
X = 0.03Cp / (100x1.0363t) %.
Из приведенной формулы исходят следующие основные выводы:
1. С повышением давления растворимость SO2 в воде повышается. Это объясняется тем, что с повышением общего давления растет и парциальное давление, составляющее часть общего, а с повышением парциального давления газа над его раствором состояние равновесия смещается в сторону увеличения количества поглощенного газа.
2. Чем выше концентрация SO2 в поступающем газе (т. е. выше парциальное давление), тем большее его количество может перейти в раствор.
3. С повышением температуры раствора количество SO2, способного раствориться, понижается.
Процесс поглощения сернистого газа водой сопровождается химической реакцией образования сернистой кислоты
SO2 + H2O ? H2SO3.
Количество сернистой кислоты при 10° составляет 80 % от всего растворенного SO2. С повышением температуры равновесие реакции смещается влево и при 90° сернистой кислоты содержится всего 10 %.
Максимальная концентрация SO2 в воде при атмосферном давлении 22,8 %. Повышая давление, можно довести концентрацию до 24–25 % SO2. При дальнейшем повышении содержания SO2 раствор распределяется на два слоя: нижний — жидкий 98,6 % SO; и верхний раствор, содержащий 24–25 % SO2. Повысить содержание SO2 до 29,2 % можно охлаждением раствора до -3°. При температуре -3,5° раствор замерзает. Однако растворы указанных выше концентраций практического применения не имеют. Обычно концентрация водного раствора SO2, используемого, например, на второй ступени варки ацетатной целлюлозы, не превышает 7–10 %.
Варочная кислота для кислой сульфитной варки состоит из бисульфитного раствора и свободного SO2, а для бисульфитной арки — без свободного SO2, поэтому в производственных условиях приходится иметь дело с абсорбцией SO2 растворами бисульфита.
Естественно, что в данном случае на насыщение растворов оказывает влияние, кроме температуры, давления и концентрации SO2, концентрация самого бисульфита. На рис. 6 приведена номограмма для определения теоретического содержания всего SO2 в кислоте (т. е. того количества SO2, которое может быть поглощено при заданной температуре кислоты), содержание CaO в ней и концентрации SO2 в газе (парциальном давлении). По номограмме находим (пунктирная линия), что при температуре 25° и парциальном давлении 0,1 ата (концентрация печного газа 10 %) в растворе, содержащем 1,2 % CaO, может раствориться 3,44 % SO2. Подобным образом по номограмме может быть определен состав сырой кислоты при разных условиях.
Из номограммы видно, что с повышением количества основания в кислоте растворимость SO2 в растворе бисульфита возрастает. Однако одновременно с этим содержание свободного SO2 уменьшается. Так, в приведенном выше случае при содержании в растворе 1,37 % связанного SO2 (1,2 % CaO) в виде бисульфита Ca(HSO3)2 будет находиться 2,74 % SO2, а свободного SO2 1,7 %. При тех же условиях, но при содержании связанного SO2 1,6 % (1,4 % CaO) или 3,2 % в виде бисульфита, общее SO2 будет составлять 3,92 %, т. е. растворенного SO2 из них всего 0,72 %.
Рис 6. Номограмма для определения содержания SO2 в башенной кислоте.
Дальнейшее увеличение содержания основания в кислоте при данном парциальном давлении возможно только до некоторого предела, называемого равновесным состоянием. Переход через его границы вызовет выпадение из раствора моносульфита CaSO3. Для устойчивости бисульфита кальция в растворе обязательным является наличие некоторого избытка свободного SO2, соотношение между общим и связанным SO2 всегда должно быть больше 2.
Растворы бисульфита магния устойчивы и без избыточного SO2; наряду с бисульфитом Mg(HSO3)2 может содержаться и некоторое количество моносульфита MgSO3, а отношение общего SO2 к связанному в равновесном растворе будет всегда около 1,95. Такое положение определяется большей растворимостью бисульфита магния. Растворимым является и моносульфит, причем его растворимость растет с повышением температуры и зависит от концентрации общего SO2 в кислоте. При температуре ниже 43° растворимость MgSO3 понижается с увеличением концентрации общего SO2 до определенного предела, а за тем начинает расти. При температуре выше 43° растворимость растет с повышением содержания общего SO2. Такое явление объясняют тем, что в первом случае определяющей является растворимость SO2 в воде, во втором в Mg(HSO3)2.
Моносульфиты натрия и аммония хорошо растворимы вводе, и так как в растворах, применяемых в производстве, содержание основания ограничено — получение в этом случае растворов, насыщенных по сульфиту, исключено.
Свойства насыщенных по сульфиту растворов определяются видом основания, т. е. парциальное давление SO2 над такими растворами различно при одном и том же содержании связанного и общего SO2. При наличии избыточного SO2 в растворе эти индивидуальные свойства бисульфитов исчезают и парциальное давление при данной температуре и содержании связанного SO2 определяется только содержанием свободного SO2 в растворе.
Таким образом, приготовление кислоты можно представить в виде следующих последовательно протекающих процессов.
1. На кальциевом основании. Турменный способ основан на поглощении сернистого газа в башнях (турмах), заполненных известковым камнем (СаСОз). Вода, подаваемая в турму, поглощает SO2 с образованием сернистой кислоты по реакции
SO2 + Н2O ? H2SO3.
Сернистая кислота, стекая по насадке из известкового камня, вступает с ним в реакцию
H2SO3 + СаСО3 ? CaSO3 + Н2О + СО2
CaSO3 + H2SО3 ? Са (HSО3)2.
Образовавшийся бисульфит абсорбирует дополнительное количество SO2 в соответствии с температурой орошающей жидкости, концентрацией печного газа и его давлением, в результате чего получается сырая кислота.
Известково-молочный способ заключается в поглощении сернистого газа известковым молоком в специальных абсорберах по реакциям:
SO2 + Н2О ? H2SО3
H2SО3 + Са(ОН)2 ? CaSO3 + 2H2O
CaSО2 + H2SO3 ? Ca(HSO3)2.
Для поддержания нужного соотношения между свободным и связанным SO2 его вводят в таком количестве, чтобы некоторая часть SO2 не соединялась с известью.
2. На магниевом основании. Для получения кислоты, содержащей бисульфит магния, применяются барботжные колонны, насадочные абсорберы или скрубберы Вентури, на орошение которых подается магнезиальное молочко. При этом происходят реакции, аналогичные предыдущим. Если готовится кислота для бисульфитной варки, где не требуется свободного SO2, процесс на этом заканчивается. Следовательно, можно приготовить кислоту, содержащую некоторое количество моносульфита и применяющуюся для специальной варки, — нейтральный магнефит
2Mg(HSO3)2 + Mg(ОН)2 ? Mg(HSO3)2 + 2MgSO3 + H2O.
Приготовление кислоты для обычной кислой сульфитной варки заканчивается дальнейшим насыщением раствора сернистым газом до получения заданного количества свободного SO2.
3. На натриевом основании. Для приготовления кислоты с натриевым основанием используется кальцинированная сода (Nа2СO3), и процесс протекает следующим образом
SO2 + H2O ? H2SO3
2Nа2СO3 + H2SO3 ? 2NaHСO3 + Nа2SO3,
2NaHCO3 + H2SO3 ? Nа2SO3 + 2H2O + СO2,
Nа2SO3 + H2SO3 ? 2NaHSO3.
Так же, как в случае магниевого основания, дальнейшее продолжение процесса или прекращение его на этой стадии зависит от способа варки, для которого готовится кислота. В отличие от магниевого основания на натриевом можно приготовить растворы, содержащие только моносульфит (Nа2SO3), которые применяются для варки полуцеллюлозы по нейтрально-сульфитному способу.
4. На аммониевом основании. Кислоту с аммониевым основанием готовят поглощением сернистого ангидрида аммиачной водой (NH4OH)
SO2 + H2O ? H2SO3
2NH4OH + SO2 ? (NH4)2SO3 + H2O,
(NH4)2SO3 + H2SO3 ? 2NH4HSO3.
Возможности аммониевого основания с точки зрения состава кислоты подобны натриевому. Однако в практике применение нашли только растворы для кислой и нейтрально-сульфитной варок.