Глитчи
Радиопульсары на протяжении жизни замедляют свое вращение. Однако на фоне постоянной потери вращательной энергии иногда происходят «взбрыки». Пульсар резко увеличивает свою частоту вращения, а потом снова продолжается замедление. Период при таком событии уменьшается совсем чуть-чуть – например, на одну миллионную или даже миллиардную долю, но уже в начале 1970-х годов точность наблюдений позволяла это заметить. Такие события назвали глитчами.
То, что глитчи сообщают нам что-то очень важное о физике нейтронных звезд, было ясно сразу. Но что? Довольно быстро появились две основные идеи о происхождении глитчей. Первая кажется более наглядной. Это звездотрясения.
Представьте себе каплю воды в невесомости. Если она не вращается и никаких внешних воздействий нет, то капля примет точно сферическую форму из-за действия сил поверхностного натяжения. Раскрутим каплю – получим так называемый эллипсоид вращения: на полюсах – сплюснуто, вдоль экватора – вытянуто. Пусть теперь вращение капли постепенно замедлится, тогда и она снова постепенно станет сферой. Теперь на место капли поместим нейтронную звезду. Своей сферической формой она обязана действию гравитации. Ее вращение замедляется на стадии радиопульсара, но плавно изменять свою форму она не может: ведь у нее жесткая кора. Поэтому в коре постепенно растут механические напряжения, и наконец наступает момент, когда материал коры больше не может им сопротивляться. Кора резко переходит в новое состояние – звезда разом меняет свою форму. Именно в этот момент пульсар должен немного ускорить свое вращение. Очень красивая идея, но со временем стало ясно, что она не безупречна. Сам скачок периода она объясняет хорошо, но вот постепенную релаксацию темпа вращения после глитча – плохо. Поэтому сейчас более популярна другая гипотеза.
Глитч пульсара. Видно, как на фоне монотонного роста периода вращения происходит резкий скачок – уменьшение периода.
Несколько лет назад в гонках «Формула-1» была введена обязательная система рекуперации кинетической энергии – KERS (kinetic energy recovery system). Сейчас все такие системы основаны на зарядке аккумуляторов. Но среди первых были и механические. Идея проста: машина тормозит, но часть кинетической энергии не рассеивается, а идет на раскручивание массивного маховика. Позже, когда понадобится дополнительное ускорение, энергию вращения маховика можно передать на вал, и машина резко прибавит скорость. Похожий механизм, вероятно, действует и у нейтронных звезд.
В коре нейтронной звезды, во внутренних частях, нейтроны могут находиться в сверхтекучем состоянии. Это все меняет, так как сверхтекучая жидкость вращается странным образом. Если взять кастрюлю сверхтекучей жидкости и начать ее вращать, то вначале жидкость вообще не будет вращаться. Затем, при достижении критического темпа вращения, в центре кастрюли появится вихрь. Раскрутим еще сильнее – появится второй, третий и т. д. Но остальная часть жидкости вращаться не будет. Свойства вихрей квантованы, а их число соответствует темпу вращения сосуда: чем быстрее вращение – тем больше вихрей.
Замедление вращения нейтронной звезды связано с воздействием сил на ее кору. Кора жестко связана с основной массой недр звезды – с ее ядром, но не со сверхтекучими нейтронами во внутренней коре. Поэтому, пока вся звезда замедляется, нейтронная жидкость в коре вращается (как умеет, т. е. за счет вихрей) с тем же темпом, что и раньше. Накапливается разница скоростей вращения, но это не может продолжаться бесконечно. В какой-то момент система вихрей резко перестраивается, меняется их число. Теперь нейтронная жидкость подстроилась под общий темп вращения звезды, т. е. замедлилась. Но система-то у нас замкнутая! Сверхтекучая жидкость передала избыточную часть своего вращения коре, которую мы наблюдем. Поэтому вся остальная звезда немного увеличивает скорость вращения – происходит глитч.
Наблюдая радиопульсары, мы видим скорость вращения магнитосферы нейтронной звезды, которая жестко укоренена в ее коре. Поэтому, определяя период, мы измеряем вращение коры, связанной с ядром, – т. е. практически всей нейтронной звезды, кроме сверхтекучих нейтронов. Постепенное накопление разницы темпа вращения всей звезды и сверхтекучих нейтронов в коре остается для нас незаметным, но перестройки системы вихрей наблюдаются нами как сбой периода радиопульсара.
Интересно, что у магнитаров наблюдают явление, называемое антиглитчем. Как ясно из названия, оно состоит в резком замедлении вращения. Природа этого феномена не ясна. Вполне возможно, что здесь дело не в сверхтекучести, а в сильных магнитных полях в коре таких объектов.
Модель с перестройкой структуры сверхтекучих вихрей хороша тем, что в ней можно объяснить поведение нейтронной звезды после глитча. Хотя остается и много вопросов. Тем не менее данные по глитчам используют для того, чтобы поставить ограничения на параметры уравнения состояния нейтронных звезд. То есть узнать, как ведет себя вещество компактных объектов.