Глава 9 Течение жидкостей и газов

We use cookies. Read the Privacy and Cookie Policy

«Причудлив парадокса путь —

С ним здравый смысл ты позабудь.»

У. С. Гильберт

Как может летящий мяч «завернуть» в сторону? Почему поток воздуха в пульверизаторе засасывает жидкость вверх, а не гонит ее вниз? Эти и множество других причуд в поведении ветра и текущей воды при ближайшем рассмотрении оказываются примерами ускоренного движения, подчиняющегося второму закону Ньютона. Когда подталкивают автомобиль и он начинает двигаться быстрее, это никого не удивляет. Можно было бы ожидать, что ускоренное движение жидкости будет приводить к столь же привычным результатам. Однако же на самом деле мы сталкиваемся тут с рядом неожиданных эффектов. Эти эффекты были исследованы математиком Бернулли и потому получили его имя. Некоторые из них используются в различных областях физики, другие помогают понять сущность важных явлений. Мы рассмотрим несколько таких эффектов и покажем, что они возникают как следствие обычных законов механики.

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыты 1 и 2 демонстрируют два «парадокса Бернулли».

Опыт 1. Поток воздуха в стеклянной воронке притягивает легкий шарик (фиг. 221).

Поток воздуха, направленный вниз, втягивает, несмотря на силу тяжести, шарик в воронку и удерживает его там. За счет чего происходит этот подъем, как будто противоречащий здравому смыслу? В горловине поток воздуха, сжатый в узком промежутке, должен двигаться быстрее, и, казалось, можно было ожидать, что он вытолкнет шарик, а между тем шарик втягивается в воронку.

Фиг. 221. Струя воздуха поднимает шарик и удерживает его в воронке.

Опыт 2. Струя воздуха может поддерживать легкий шарик (фиг. 222).

Если струю повернуть, шарик удерживается около нее и не падает. Струя воздуха ударяет в шарик, и мы снова ждем, что поток должен оттолкнуть шарик, однако этого не происходит.

Фиг. 222. Струя воздуха поддерживает шарик.

Ламинарное и турбулентное течения

Для объяснения этих парадоксов надо изучить свойства ламинарного спокойного течения. Когда по трубке течет установившийся поток жидкости или газа, отдельные части потока движутся вдоль плавных линий тока, форма которых определяется стенками трубки (фиг. 223 и 224).

При более быстром потоке линии тока около препятствия в трубке могут закручиваться в виде вихрей или водоворотов, а при еще большей скорости даже в прямой трубке линии тока исчезают в беспорядке бурного турбулентного движения.

Фиг. 223. Линии тока около препятствия.

а — ветер дует над неподвижным автомобилем; б — река течет мимо неподвижной рыбы.

Фиг. 224. Линии тока жидкости в трубке.

Опыт 3. Линии тока в медленно текущей воде можно продемонстрировать с помощью чернил (фиг. 225) или с помощью кристаллов красителя (перманганата калия), которые окрашивают проходящий мимо них поток воды (фиг. 226)[140].

Фиг. 223. Демонстрация линий тока.

Из узкой щели в бачке вода стекает между двумя стеклянными пластинками. Линии тока обозначаются чернилами, вытекающими из точечных отверстий вдоль щели. На среднем рисунке линии тока искажены препятствием, имеющим форму поперечного сечения крыла самолета.

Фиг. 226. «Родник и сток» в озере.

Вода течет в узком пространстве, ограниченном крышкой стола и стеклянным листом. Небольшой постоянный поток подается через одну трубку и отводится через другую. Кристаллы красителя, рассыпанные на столе, окрашивают линии тока.

Опыт 4. Если двигать ложку в тарелке с супом или палец в тазу с водой, на поверхность которой посыпан порошок, то за ними остаются «вихри» (водовороты). Струйка красителя, вводимая в текущую по трубе воду, при медленном течении следует вдоль линии тока, но если скорость потока превысит критическую, она начинает колебаться, разбиваться на вихри и растворяться в общем бурном потоке, так что окраска распространяется по всей воде (фиг. 227).

Фиг. 227. Ламинарное и турбулентное течения.

а — при медленном течении струйка чернил движется вдоль линий тока; б — при быстром течении появляется турбулентность; в — ложка, быстро движущаяся в тарелке с супом, оставляет за собой «водовороты». 

Теперь рассмотрим движение твердого предмета, например рыбы или самолета, в покоящейся жидкой или газообразной среде. На пути движущегося предмета среда должна расступаться. Такие перемещения трудно представить себе, поэтому мы заставим двигаться среду в виде постоянного потока, а предмет неподвижно закрепим, подобно модели в аэродинамической трубе. Тогда среда будет двигаться вдоль линий тока, отклоняющихся вблизи предмета. Поток, заключенный между двумя выделенными линиями тока, должен все время оставаться между ними. Когда линии тока изгибаются и поворачиваются, сближаются или расходятся, поток должен течь между ними, как река между берегами. (Поскольку движение происходит именно вдоль этих линий тока, то поток не может проходить поперек них.) Там, где трубка сужается и линии тока приближаются друг к другу, поток должен двигаться быстрее, потому что одной и той же массе вещества приходится каждую секунду проскакивать через более узкое пространство (фиг. 228). И вообще там, где линии тока сближаются, скорость течения возрастает.

Фиг. 228. Сгущение линий тока указывает на повышение скорости.

В том месте, где трубка сужается, сгущая линии тока, должно происходить увеличение скорости. Стрелки показывают величину скорости вдоль линии тока

Типы течения

Когда жидкость обтекает неподвижный предмет, картина линий тока и характер сил, действующих на предмет, зависят от скорости потока. Обсудим некоторые типы течения жидкости вокруг неподвижного предмета.

1. Течение идеальной жидкости без внутреннего трения. Если бы жидкость была лишена трения (этот воображаемый случай был бы крайне неблагоприятен с практической точки зрения), линии тока огибали бы предмет максимально симметрично и плавно продолжались бы позади него (фиг. 229, а). Все слои жидкости двигались бы с одинаковой скоростью, равной общей скорости, если не считать некоторое повышение скорости около предмета, компенсирующее изменение сечения потока. Равнодействующая сил давления на поверхность предмета была бы равна нулю, жидкость, лишенная вязкости, не поднимала бы и не увлекала бы за собой предмет! Хотя такое поведение, по-видимому, противоречит опыту, все же идеальная лишенная вязкости жидкость иногда является полезной абстракцией для изучения распределения линий тока. Однако во всех реальных жидкостях существует внутреннее трение. Жидкость не может скользить вдоль поверхности твердого предмета, она неподвижна на его поверхности (или движется вместе с ним, если предмет движется). Полированная поверхность твердого тела в молекулярном масштабе оказывается слишком грубой и захватывает даже быстротекущую жидкость, которая образует у поверхности неподвижный слой. Поэтому предсказываемое теорией необычное поведение идеальной жидкости (не поднимает и не увлекает за собой предметы) никогда не наблюдается в действительности[141]. Наличие у жидкости внутреннего трения изменяет картину линий тока и распределение скоростей в потоке. В очень медленно движущемся потоке линии тока плавно изгибаются вокруг предмета; в очень быстром потоке позади предмета они образуют сложный шлейф из вихрей. Теперь опишем эти крайние формы и промежуточные между ними стадии для реальной жидкости, обтекающей твердый предмет.

Фиг. 229. Ламинарное течение.

а — идеальная жидкость без вязкости, F = 0; б — ламинарное течение в вязкой жидкости, F ~ v; в — турбулентное течение, F ~ v2; г — течение c пограничным слоем.

2. Очень медленное ламинарное течение. В этом случае характер течения полностью определяется наличием вязкости жидкости. Линии тока имеют точно такой же вид, как и в идеальной жидкости, но скорости распределяются совершенно по-другому. Далеко от предмета, где течение не нарушено, жидкость течет с полной скоростью. На поверхности предмета жидкость неподвижна. По мере удаления от предмета происходит постепенное возрастание скорости от одной линии тока к другой (фиг. 229, б).

Распределение линий тока и скоростей определяется внутренним трением жидкости («вязкостью»), которое создает действующую на предмет силу; эта сила изменяется прямо пропорционально скорости течения (F ~ v).

3. Предмет необтекаемой формы в быстром потоке; турбулентное течение. Когда скорость течения увеличивается, трение в жидкости уже не определяет полностью характер процесса, а все более важную роль начинают играть изменения количества движения в большом масштабе. Линии тока, как и раньше, при встрече с предметом расходятся, но за ним они уже полностью не смыкаются, (фиг. 229, в). Позади предмета линии закручиваются и образуют бурлящий ряд вихрей (водоворотов). Образование вихрей создает силу сопротивления, которая намного превосходит небольшое сопротивление, обусловленное внутренним трением жидкости.

Эта сила пропорциональна квадрату скорости течения (F ~ v2). Таким образом, предмет необтекаемой формы, быстро движущийся в воздухе, испытывает сопротивление, величина которого в широком интервале скоростей пропорциональна квадрату скорости. (Следовательно, сила, требуемая для поддержания движения, пропорциональна кубу скорости, поэтому удвоение скорости требует увеличения силы в 8 раз — это очень важно учитывать при проектировании кораблей.)

Ширина и интенсивность вихревого шлейфа за предметом зависит от формы предмета. Прямоугольный предмет, даже круглый мяч (предмет любой «необтекаемой» формы) создает в потоке большую вихреобразующую поверхность и испытывает большое сопротивление. Закругленный или заостренный нос несколько улучшает дело, но для хорошего обтекания предмет должен иметь длинный конусообразный хвост (см. фиг. 253, стр. 377). Превосходной обтекаемой формой обладают рыбы.

4. Обтекаемый предмет в быстром потоке; пограничный слой. В этом случае линии тока сохраняют примерно такую же форму, как и при медленном течении, хотя распределение линий может стать несимметричным; однако при быстром течении скорости распределяются совершенно по-другому и образуется небольшой вихревой шлейф. Если предмет имеет хорошо обтекаемую форму, то шлейф мал и картина будет в основном ламинарной. Этот случай обычно осуществляется при движении самолетов и кораблей. При этом распределение скоростей вблизи предмета такое же, как и в медленном потоке в вязкой жидкости, но при быстром течении возмущающее действие препятствия не успевает распространиться на большое расстояние. (В некотором смысле жидкость проскакивает мимо препятствия быстрее, нем до нее доходит тормозящая сила.) Поэтому область изменения скорости сжимается в тонкий «пограничный слой», лежащий в непосредственной близости от предмета, а более удаленные части потока движутся почти с той же скоростью, что и в идеальном случае. Внутри пограничного слоя скорость тока в очень узком пространстве изменяется от нуля до полной величины, и силы внутреннего трения в жидкости создают действующую на предмет силу сопротивления (фиг. 229, г). Чем быстрее течение, тем теснее сжимается область переменной скорости, тем тоньше пограничный слой. Вследствие этого сила сопротивления возрастает быстрее скорости. (Детальный анализ дает F ~ v3/2, или F ~ √(v3).)

При больших скоростях трение часто создает еще один эффект. Оно может вызвать круговое движение, например циркуляцию воздуха вокруг крыла самолета; вследствие такого кругового движения линии тока распределяются несимметрично и возникает подъемная сила (фиг. 230).

Фиг. 230. Внутреннее трение создает циркуляцию.

а — внутреннее трение создает циркуляцию воздуха вокруг крыла самолета при встрече крыла с ветром; б — внутреннее трение приводит к круговому движению в виде колечка дыма.

Пограничный слой по направлению к тыльной стороне предмета становится толще, и там, где он кажется прилегающим менее плотно, может происходить образование вихрей. Конструкторы самолетов направляют основные усилия на то, чтобы предотвратить слишком ранний отрыв пограничного слоя с несущих крыльев, потому что из-за этого уменьшается подъемная сила крыла, а сопротивление увеличивается, и самолет теряет способность летать.

Даже при хорошей конструкции не удается избавиться от некоторого вихревого потока, создающего заметное сопротивление (F ~ v2), которое надо учитывать наряду с трением в пограничном слое[142]. Однако для расчета суммарного сопротивления нельзя применять простую формулу типа

F = kv + k'v3/2 + k" v2

(или соответствующую формулу для подъемной силы), в которой k, k' и k" постоянны для данного тела, потому что при переходе от одного интервала скоростей к другому картина потока меняется, а следовательно, изменяются и величины k. Поэтому применяются более сложные математические методы. При осуществлении полета на практике появляется дальнейшее усложнение, связанное с наличием управляемых подвижных щитков, которые меняют форму движущегося тела. При расчетах полетов или течения жидкости нельзя доверять простым формулам с «постоянными величинами», встречающимся как в этой главе, так и в других книгах. (При чтении книг по этим вопросам прежде всего смотрите на дату их выхода, избегайте книг, изданных более десятка лет назад.)

Парадоксы

Описанные ниже парадоксы Бернулли возникают при промежуточных скоростях потока, когда течение еще ламинарное, но уже настолько быстрое, что силы трения малы по сравнению с теми перепадами давления, которые возникают при изменениях количества движения, связанных с изменением направления или скорости потока, заключенного между линиями тока. В первом парадоксе с воронкой, которая всасывает шарик, мы имеем дело с быстрым потоком, в котором линии тока сгущаются над шариком, когда он близко подходит к воронке. Можно было бы ожидать, что такой поток будет отталкивать шарик и заставит его упасть. Однако шарик, по-видимому, притягивается к воронке (фиг. 231). Из этого можно сделать вывод, что область быстрого течения, по-видимому, обладает необычными свойствами. Поэтому исследуем связь между давлением и скоростью потока.

Фиг. 231. Парадокс воронки и шарика.

Справа — увеличенный разрез, показывающий линии тока в воздухе.

Начнем с течения жидкости в трубке. В однородной трубке все линии тока параллельны. В идеальной жидкости все линии имеют одну и ту же скорость (фиг. 232); стенки трубки не оказывают никакого сопротивления, и для поддержания раз начавшегося течения не потребуется никакой разности давлений на концах трубки (первый закон Ньютона).

Фиг. 232. Идеальная (не имеющая вязкости) жидкость течет вдоль линии тока.

Скорость всех частей жидкости одинакова.

В реальной жидкости течение быстрее всего в центре, на оси трубки, в соседних слоях оно медленнее, а по мере удаления от центра еще более замедляется; на стенках трубки жидкость остается в покое. Распределение скоростей при ламинарном течении показано на фиг.233. (При более быстром течении с пограничным слоем на стенках поток также имеет наибольшую скорость в центре, но скорость по сечению трубки почти одинакова и резко падает только в пограничном слое.) Исследуйте зависимость между давлением и скоростью в трубке с водой.

Фиг. 233. Ламинарное течение.

а — ламинарное течение реальной жидкости в трубке. Стрелки показывают скорость течения в различных участках; б — жидкость, медленно текущую в трубке, «метят» с помощью мгновенно нанесенной поперек потока полоски красителя. Передвижение краски показывает скорости на различных участках.

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыт 5. Течение воды по узким трубкам (фиг. 234). Вода, текущая по трубкам, всегда испытывает некоторое сопротивление, обусловленное внутренним трением жидкости.

Фиг. 234. Медленное течение воды через узкую однородную трубку.

а — при удвоении давления скорость течения удваивается. Измерительные трубки, присоединенные к боковым отверстиям, показывают давление текущей воды на стенки трубки;

б — для измерения давления годится любое устройство (сверху вниз): вертикальная трубка; U-образные трубки со ртутью; внизу показан манометр, содержащий упругую металлическую трубку, соединенную со стрелкой (манометр Бурдона);

в — если такое же давление приложить к трубке удвоенного диаметра, скорость течения увеличится в 16 раз.

Чтобы вязкость не помешала нашему исследованию парадоксов, рассмотрим сначала ее влияние. Мы используем это рассмотрение впоследствии для иллюстрации движения электрического тока (гл. 32[143]), а перед этим дадим молекулярное объяснение внутреннего трения газов (гл. 30[144]).

В опыте, показанном на фиг. 234, применена очень узкая трубка, капилляр, по которой под действием разности давлений на концах трубки медленно (ламинарно) течет жидкость. Устройства для измерения давления обнаруживают постепенный спад давления вдоль трубки.

Хотя жидкость движется под действием перепада давлений, она не ускоряется (скорость потока вдоль трубки одинакова), поэтому должны существовать иные силы, чтобы суммарная сила, действующая на любую часть жидкости, была равна нулю.

Эти силы создаются внутренним трением жидкости. Стенки трубки вследствие внутреннего трения тормозят движение ближайшего к ним слоя жидкости, и это торможение передается от одного слоя к другому по всему потоку жидкости от стенок трубки до ее оси, где течение происходит быстрее всего.

Чтобы увеличить скорость установившегося потока в трубке, надо изменить давление. Для поддержания более быстрого течения потребуется большее давление. Действительно, опыт показывает, что для данной трубки скорость течения прямо пропорциональна разности давлений между концами трубки (до тех пор, пока при быстром течении не появится турбулентность). Это общий закон, обусловленный влиянием внутреннего трения на ламинарный поток жидкости:

v ~ (р1р2).

При переходе к более широкой трубке распределение линий тока и внутреннее трение в жидкости сохраняются, но роль трения становится менее заметна. В этом случае медленный слой жидкости около стенок трубки составляет меньшую долю от общей массы движущейся жидкости. Поэтому для получения той же скорости на осевой линии тока требуется значительно меньшая разность давлений. А при той же разности давлений в более широкой трубке возникает более быстрое течение. Опыт дает следующие соотношения для медленного ламинарного потока, движущегося по различным длинным трубкам под действием разности давлений на их концах:

СКОРОСТЬ, усредненная по всем линиям тока ~ РАЗНОСТЬ ДАВЛЕНИЙ МЕЖДУ КОНЦАМИ ТРУБКИ / ДЛИНА ТРУБКИ,

СКОРОСТЬ, усредненная по всем линиям тока в трубке ~ (ДИАМЕТР ТРУБКИ)2.

Умножение средней скорости на площадь поперечного сечения трубки даст объем жидкости, протекающий через любое сечение в единицу времени, потому что

СКОРОСТЬ = ДЛИНА, ПРОЙДЕННАЯ В ЕДИНИЦУ ВРЕМЕНИ

и

СКОРОСТЬ∙ПЛОЩАДЬ = (ДЛИНА∙ПЛОЩАДЬ)/ВРЕМЯ = ОБЪЕМ/ВРЕМЯ

Таким образом, для медленного ламинарного потока в трубках

ОБЪЕМ, протекающий в секунду ~ РАЗНОСТЬ ДАВЛЕНИЙ МЕЖДУ КОНЦАМИ ТРУБКИ/ДЛИНА ТРУБКИ,

и

ОБЪЕМ, протекающий в секунду ~ (ДИАМЕТР ТРУБКИ)4.

Обратите внимание на сильное влияние диаметра трубки.

Подумайте о различии между течением крови в тонких сосудах и в артериях. В очень тонких капиллярах кровяные тельца могут фактически закупорить проток, уменьшая течение даже еще больше, чем предсказывает написанная выше простая формула.

Задача 1

С помощью диаграммы фиг. 234 можно дать простое графическое изображение отношения (разность давлений):(длина). Можете ли вы предложить термин для обозначения этого отношения?

Задача 2

Примем течение нефти в трубопроводе за ламинарный поток и предположим, что к нему применимы приведенные выше соотношения. Как должно влиять удвоение диаметра трубы:

а) на объем нефти, протекающий за день через любое сечение трубы при одном и том же давлении в насосной системе?

б) на стоимость металла для труб, если толщина стенок трубы остается одной и той же и общая длина остается неизменной?

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыт 6. Изменение скорости и давления потока: эффект Бернулли (фиг. 235). Заставим движущуюся воду изменять свою скорость вдоль трубки. Для этого можно вставить в трубку более тонкий участок. Сделайте весь прибор из очень широких трубок, чтобы влиянием внутреннего трения жидкости можно было пренебречь. Тогда, кроме незначительного падения давления из-за трения, мы увидим резкое падение давления в том месте, где вода попадает в более узкую трубку (фиг. 236).

Фиг. 235. Ламинарное течение в широкой трубке.

Внутреннее трение жидкости играет значительно меньшую роль, поэтому давление вдоль всей однородной трубки почти одинаково.

Фиг. 236. При наличии в трубке узкого участка наблюдается изменение давления.

Обратите внимание на изгиб выходной трубы для подъема воды в измерительных трубках на заметную высоту. 

Если приложенное давление повышают, чтобы увеличить скорость потока, трение возрастает, но новый эффект возрастает еще больше. Поэтому при наличии более широких трубок и быстрого течения трением можно пренебречь и наблюдать новый эффект: изменение давления при изменении скорости течения в результате сужения или расширения трубки. Влияние трения можно также исключить (не совсем честным путем), если на каждом участке поставить только один измеритель давления (фиг. 237). При еще более быстром течении в узких участках давление падает ниже атмосферного и в трубку засасываются пузырьки воздуха (фиг. 237, б).

Фиг. 237. Чем быстрее течение, тем больше изменение давления.

Задача 3

Используя обнаруженный эффект, сконструируйте простое распылительное устройство.

Задача 4

На фиг. 238 показан прибор, который был изображен на фиг. 237, б, но в перевернутом виде, с боковой трубкой, погруженной в чернила. Что произойдет? Объясните.

Фиг. 238. К задаче 4.

Принцип Бернулли — ключ к парадоксам

Как показал опыт, изображенный на фиг. 235–237, давление меньше там, где быстрее течение. Это положение называется принципом Бернулли.

От экспериментального наблюдения без дополнительных пояснений можно перейти к парадоксу «шарик в воронке». Посмотрим на линии тока, которые схематически изображены на фиг. 239.

Фиг. 239. Линии тока воздуха, обтекающего шарик в воронке.

В точке С, где течение быстрее, давление меньше.

В области D, где поток воздуха выходит наружу, давление равно атмосферному. В узком зазоре С скорость потока выше, потому что то же количество воздуха должно пройти через более узкое пространство. Какое будет здесь давление — больше или меньше?

Теперь вам понятно, что удерживает шарик?

Принцип Бернулли и его объяснение

Принцип «где быстрее течение, там меньше давление» справедлив для ламинарного течения газа или жидкости. Он специфичен, но не столь непонятен, как это кажется. На самом деле его можно предсказать на основании известного уже вам второго закона Ньютона с помощью следующего рассуждения.

Выделим небольшой цилиндрический элемент жидкости, движущийся вдоль линий тока в области А (фиг. 240).

Фиг. 240. Линии тока жидкости, текущей по трубе.

В области В этот элемент движется быстрее, и, следовательно, его количество движения возрастает. Движение ускоряется где-то между A и С, очевидно, в сужающейся шейке В. Но ускорение требует наличия силы, а в движущейся жидкости эта сила может быть создана только давлением окружающей жидкости. Это заставляет предположить, что давление в А должно быть выше, чем в В. Если бы во всех областях А, В и С давление было одинаковым, откуда могла бы в жидкости возникать ускоряющая сила? Элемент жидкости ничего не «знает» о внешнем мире и о существующих в нем силах, кроме давления окружающей жидкости. Итак, парадоксальный эффект Бернулли превращается в иллюстрацию второго закона Ньютона: для создания ускорения должна существовать разность давлений.

Чтобы представить себе это более ясно, вообразите крошечную подводную лодку в форме куба; увлекаемая жидкостью, она плывет в ламинарном потоке. Где течение быстрее, там лодка движется быстрее; ее движение, как и движение жидкости, должно ускоряться при переходе из широкой трубки А в более узкую С и замедляться при переходе из С в D (фиг. 241).

Фиг. 241. Объяснение принципа Бернулли.

Ускорение должно быть вызвано разностью давлений. Давление на боковые стенки лодки не влияет на ее движение вперед, поэтому его можно не учитывать. Но давление на переднюю и заднюю стенки должно создавать равнодействующую при ускорении или замедлении движения. Поэтому, когда лодка ускоряется в В при переходе из А в С, сила, подталкивающая ее в корму, должна быть больше силы, оказывающей сопротивление носу. Давление на корму должно быть больше давления на нос. Корма лодки находится в области медленного течения А, а нос — в области быстрого течения С. Давление должно быть меньше там, где течение быстрее. Когда лодка переходит из С в D, давление на корму оказывается меньше давления на нос и движение замедлится.

Это несколько туманное рассуждение справедливо в рамках обсуждаемого вопроса — разность давлений вызывает ускоренное движение жидкости. Чтобы развить его дальше, следовало бы подробно обсудить вопрос об энергии. Пока мы будем применять принцип Бернулли в приведенной выше расплывчатой формулировке — при ламинарном течении давление меньше там, где быстрее течение. Он неприменим к вихревому или турбулентному течению. Даже при ламинарном течении этот принцип неприменим при перемещении от одной линии тока к другой, потому что ни один элемент не может двигаться поперек линий тока; однако, поскольку поперечных течений нет, большой разности давлений, вообще говоря, не возникает при переходе от одной линии тока к соседней.

Принцип Бернулли важен, но он не является тем фундаментальным законом физики, который всем необходимо знать. Он приведен здесь как пример необычного поведения, которое может быть «объяснено» на основе общих знаний без особых законов, придуманных специально для этой цели[145].

Примеры эффекта Бернулли

На фиг. 242, а струя воздуха обдувает открытый конец трубки, погруженной в жидкость. Воздух в области А движется быстрее, чем в области В, где он смешивается с атмосферным воздухом. Поэтому давление в А ниже атмосферного, и атмосферное давление в D может поднять жидкость по трубке, где она распыляется. На Фиг. 242, б показаны два шарика для пинг-понга, подвешенные на гибких проволочках недалеко один от другого. Струя воздуха между ними заставляет их сблизиться. На фиг. 242, в воздух по трубке АВ подается в отверстие в центре закрепленного диска С.

Фиг. 242. Демонстрационные опыты.

а — распылитель; б — струя воздуха между двумя близко подвешенными легкими шариками; в — при подаче воздуха подвижная пластина D притягивается к пластине С.

Подвижный диск D расположен на небольшом расстоянии под диском С. Воздух, проходящий через АВ, прежде чем выйти в атмосферу, изменяет направление и течет горизонтально в узком пространстве между С и D. Подвижный диск D притягивается к С, даже если к нему подвесить груз W. Если диск D очень легок и закреплен подвижно, так что не может соскользнуть вбок, он будет вибрировать около С, издавая пронзительный визг. По этому принципу действует известная всем в детстве пищалка из натянутой травинки. Нечто общее с этим имеет и действие наших голосовых связок.

На фиг. 243 шарик удерживается струей воздуха или воды.

Фиг. 243. Струя воздуха удерживает легкий шарик.

Здесь удивителен не тот факт, что струя может подбрасывать шарик (для этого надо лишь, чтобы шарик попал в восходящий поток), а то, что шарик не сваливается вбок. Равновесие кажется неустойчивым, но это не так. Когда шарик отклоняется в одну сторону В, большая часть струи идет по другую сторону А. ВА, где скорость потока выше, давление меньше, поэтому большее давление в области В возвращает шарик в среднее положение. (Обычно шарик вращается, создавая дополнительное благоприятное изменение в распределении линий тока.)

Искривленный полет мяча («сухой лист»)

Почему вращающийся мяч движется по кривой линии? Можно показать, что здесь проявляется эффект Бернулли. Каждый мяч, каким бы гладким он ни казался, имеет в микроскопических масштабах шероховатости. Вращающийся мяч захватывает неровностями своей поверхности молекулы воздуха и заставляет их участвовать в своем движении. Таким образом, мяч окружен вращающимися слоями воздуха, ближайшие из которых движутся с той же скоростью, что и поверхность мяча, а более удаленные слои движутся медленнее и медленнее[146]. Если такой вращающийся мяч летит вперед, то линии тока складываются из двух движений: циркуляции воздуха вокруг мяча и потока, обдувающего мяч.

Вообразите наблюдателя, который для наблюдения за линиями тока летит за мячом, оставаясь все время на одном с ним уровне. Для наблюдателя мяч все время находится рядом, и оба они будут ощущать ветер, дующий навстречу. «Ветер» дует со скоростью полета мяча, но в противоположную сторону.

Можно прибегнуть к другому столь же полезному способу рассуждения. Представим себе сильный ветер, дующий навстречу со скоростью, в точности равной и противоположной скорости мяча. Тогда наблюдатель может спокойно стоять на земле и наблюдать за мячом, неподвижно висящим около него[147]. В таком ветре линии тока будут параллельными прямыми (фиг. 244, а).

Чтобы понять, почему вращающийся мяч может лететь по кривой линии, набросаем обе картины линий тока и затем сложим их на основе разумных предположений. На фиг. 244, б изображен вращающийся мяч с вращающимися вместе с ним слоями воздуха. Чтобы показать, что по мере удаления от мяча движение воздуха замедляется, внешние линии тока расположены на больших расстояниях друг от друга и помечены более короткими стрелками. Для сложения обоих движений наложим один рисунок на другой (фиг. 244, в) и в каждой точке сложим векторы скорости. Нарисуем в точке Р два небольших вектора скорости, v1 для равномерного потока и v2 для вращения, и построим параллелограмм, чтобы найти равнодействующую (фиг. 244, г), которая представляет собой скорость суммарного движения в этой точке. Повторите эту операцию для точек по всему рисунку, беря каждый раз одну и ту же горизонтальную скорость v1 и проводя v2 по касательной к окружностям. Скорость вращения v2 изобразите большой близко к мячу и маленькой вдали от него.

Когда вы получите достаточное количество суммарных векторов, чтобы можно было приступить к нанесению линий тока, сотрите ненужные вспомогательные построения и оставьте в каждой точке только короткие стрелки, указывающие направление суммарного потока (фиг. 244, д, е).

Фиг. 244. Линии тока вокруг движущегося в воздухе вращающегося мяча.

а — линии тока «встречного» ветра (однородный поток воздуха, противоположный полету мяча); б — линии тока воздуха вокруг вращающегося мяча; в — суммирование обоих видов тока воздуха; г — оба вида тока воздуха накладываются один на другой и скорости складывают как векторы; д, е — маленькие стрелки показывают направление суммарной скорости в точке Р.

Длина этих стрелок не обязательно должна соответствовать величине скорости. Теперь можно сообразить, как провести непрерывные линии тока, направление которых везде совпадало бы со стрелками. Здравый смысл подсказывает следующее: 1) очень далеко от мяча вращательным движением можно пренебречь, там существует стационарный поток со скоростью v1, в котором линии тока горизонтальны и распределены равномерно; 2) очень близко к мячу преобладает вращение и линии тока практически будут круговыми; 3) в некоторой точке N под мячом v1 и v2 как раз уравновесят друг друга, создавая «нейтральную точку», в которой не будет движения. Чтобы закончить рисунок, надо продолжить утомительную работу по сложению скоростей, дополняя ее с помощью воображения, или можно обмануть себя и подсмотреть реальную картину линий тока, полученную каким-либо другим способом. Такой набросок может дать лишь поверхностное представление о суммарном распределении линий тока. Чтобы получить надежную картину, надо геометрическую работу выполнить при помощи математики и в первую очередь подробно исследовать распределение скорости вращения v2. На фиг. 245 приведена полученная более строгим методом картина распределения линий тока вокруг цилиндра, вращающегося в однородном потоке воздуха. Для мяча получается сходная картина.

Фиг. 245. Линии тока вокруг вращающегося цилиндра в однородном потоке воздуха.

Схема выполнена довольно точно по картине линий тока, предсказываемой уравнением 2V = 0. Этот математический закон описывает распределение линий тока и другие распределения «закона обратных квадратов».

Задача 5

Если вы раньше изучали физику, вы, возможно, сталкивались с подобной картиной в совершенно другом разделе физики. Если да, то где? Чисто ли случайно это сходство? Может ли оно иметь какое-либо практическое значение?

Задача 6

Задание имеет смысл только при том условии, что оно будет выполнено схематически и быстро. Применяя метод, использованный при построении фиг. 244, набросайте линии тока для потока, изображенного на фиг. 246.

Фиг. 246. Линии тока для источника и стока равной силы в бесконечном озере постоянной глубины.

В мелком озере со спокойной водой в точке А имеется постоянный приток воды, а в точке В равный ему сток. Набросайте линии тока в озере, воспользовавшись следующими указаниями. Если бы действовал только приток, то линии тока расходились бы от точки А в виде лучей. Вблизи А, где линии тока расположены тесно, скорость радиального течения будет велика; дальше от А скорость будет уменьшаться[148]. Если бы действовал только сток, то создалась бы подобная картина с радиальным течением по направлению к В. Нанесите на лист бумаги точки А и В на расстоянии нескольких сантиметров одна от другой, нарисуйте оба набора линий тока и с помощью графических построений и смекалки найдите суммарную картину. (Что в этом случае соответствует указаниям 1 и 2 на стр. 370, сделанным при обсуждении фиг. 247, г?)

Где еще вы встречались с подобной картиной?

Теперь можно вернуться к летящему бейсбольному мячу.

С точки зрения наблюдателя, летящего рядом с мячом, линии тока вокруг мяча распределены, как показано на фиг. 247. Если мяч вращается вокруг горизонтальной оси, поток воздуха над мячом имеет большую скорость, чем под ним, поэтому над мячом создается область пониженного давления, а под ним — повышенного. Таким образом, давление воздуха подталкивает мяч вверх, отклоняя его от обычного пути. Подобным же образом мяч, вращающийся вокруг вертикальной оси, отклоняется в сторону под действием силы, направленной вбок. По этому вопросу было много споров, но в конце концов «искривление» полета вращающегося бейсбольного мяча было доказано измерениями. Тем не менее, если имеется некое предвзятое мнение, основанное на репутации подающего мяч игрока, игрокам и болельщикам полет может показаться более искривленным, чем он есть на самом деле.

При быстром вращении более легкого мяча, например при «резаной» подаче в теннисе, искривление полета хорошо заметно на глаз.

Фиг. 247. Линии тока в потоке воздуха около вращающегося мяча.

Очень малая часть пути мяча показана с точки зрения неподвижного наблюдателя.

Задача 7. Полет по искривленной траектории

Предположим, что два мяча — массивный бейсбольный мяч и значительно более легкий мяч того же размера — горизонтально брошены рядом друг с другом с одной и той же скоростью и с одинаковым вращением вокруг вертикальной оси.

а) Какой мяч полетит дальше (если не принимать во внимание влияние вращения и трение воздуха)?

б) На какой мяч будет действовать бóльшая отклоняющая сила (вызванная только что разобранным эффектом Бернулли)?

в) Какой мяч больше отклонится в сторону? Четко обоснуйте ваш ответ на этот вопрос.

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыт 7. Полет по искривленному пути. Пробковый мяч бросают с помощью трубки, сделанной из грубого картона. Бросающий держит трубку в отведенной назад руке и бросает мяч, замахиваясь трубкой вперед. Мяч, «отстающий» от движения трубки, катится по внутренней верхней поверхности трубки и приобретает быстрое вращение вокруг горизонтальной оси. Его отклонение вверх при полете видно глазом (фиг. 248).

Фиг. 248. Бросание вращающегося мяча.

Опыт 8. Картонный цилиндр бросают с помощью катапульты, которая одновременно сообщает ему вращение (фиг. 249). Кусок резинового шнура ABC прикреплен к столу в точках А и С. Центр шнура В соединен с цилиндром куском матерчатой ленты, которая несколько раз обертывается вокруг центральной части цилиндра. Оттягивая цилиндр по столу, растягиваем резину, а затем отпускаем ее. Бернуллиевы силы столь велики, что цилиндр может даже описать петлю.

Фиг. 249. Бросание вращающегося цилиндра с помощью катапульты.

Полет самолета

Ламинарный поток, обтекающий модель крыла самолета, можно сделать видимым, подкрасив воду чернилами или добавив в воздух дым. Тогда отчетливо видно сгущение линий тока над крылом. Поскольку давление над крылом меньше, чем под ним, то эффект Бернулли создает подъемную силу. Но каким образом крыло создает такое благоприятное распределение линий тока?

Геометрия и механика говорят, что в идеальной жидкости, лишенной внутреннего трения, распределение линий тока было бы более симметричным, без сгущений над крылом, и поэтому не было бы ни подъемной силы, ни силы сопротивления. Но в воздухе и в воде в момент старта самолета вокруг крыла создается циркуляция воздуха, подобно колечку дыма, которая движется далее вместе с самолетом (фиг. 250).

Фиг. 250. Циркуляция вокруг крыла самолета.

Вихревое движение складывается с постоянным потоком воздуха навстречу самолету и дает суммарное распределение линий тока, подобное распределению вокруг летящего вращающегося цилиндра (крыло не вращается, но его форма создает циркуляцию воздуха). Этот вихрь не мажет окончиться на кромке крыла и продолжает существовать позади самолета. Когда самолет улетает, крыло уносит с собой часть вихря, оставляя за крыльями струйки вихрей. (Именно вихри позади самолета срывают вашу шляпу, когда вы стоите слишком близко к взлетающему самолету).

Сопротивление ветра («давление» ветра[149])

Летящий самолет оставляет позади себя циркулирующий воздух, который стекает с его крыльев и фюзеляжа. Таким образом, в воздухе позади крыла создается довольно большое вихревое движение (со значительной кинетической энергией), и его масса движется вперед. Крыло непрерывно теряет количество движения и, следовательно, испытывает силу, направленную назад, «сопротивление» воздуха; корпус самолета должен тащить крыло вперед, чтобы компенсировать потерю количества движения. В целом при равномерном полете самолет не выигрывает и не теряет количества движения. Его пропеллер отбрасывает назад поток воздуха, сообщая этому воздуху количество движения, направленное назад, в то время как крыло и фюзеляж оставляют струю вихрей с количеством движения, направленным вперед. Таким образом, позади самолета возникает сложное движение воздуха, в котором суммарное количество движения равно нулю[150].

Фиг. 251. Идеализированная картина ламинарного потока.

При действительном полете позади самолета образуется вихревое движение.

В какой мере сопротивление воздуха, действующее на крыло самолета или на любой другой предмет, образующий вихри, зависит от скорости полета? Летящее со скоростью v крыло оставляет за собой слой воздуха, движущийся вслед за крылом. Обозначим через А площадь поперечного сечения этого слоя, «вертикальное лобовое сечение» крыла (фиг. 252).

Фиг. 252. За движущимся крылом остается движущийся вперед воздух.

Скорость его на самом деле составляет лишь часть скорости самолета v (для простоты мы принимаем ее равной v). При реальном полете движущийся воздух не имеет формы «бруска» — движение передается в стороны и воздух перемешивается благодаря вихрям.

Пусть действующая на крыло сила сопротивления, обусловленная непрерывной потерей количества движения, равна F. Чтобы рассчитать величину F, допустим для начала, что слой воздуха приобретает полную скорость крыла v.

Тогда, согласно F∙Δt = Δ(mv),

(сила F)∙(время t, сек) = количество движения, потерянное крылом за t сек,

= количество движения, приобретенное за t сек слоем воздуха, приходящим в движение позади крыла.

За t сек крыло продвигается вперед на расстояние vt, оставляя за собой слой движущегося воздуха длиной vt и площадью А, следовательно, объем этого слоя равен Avt.

Этот воздух имеет:

МАССА = (ПЛОТНОСТЬ)∙(ОБЪЕМ), или (d)∙(Avt).

Если скорость равна v, то количество движения равно

(МАССА)∙(ПРИОБРЕТАЕМАЯ СКОРОСТЬ), или (dAvt)∙(v), или dAv2t.

Следовательно,

Ft = dAv2t,

или

F = dAv2

получаем[151]

СИЛА = (ПЛОТНОСТЬ)∙(ПЛОЩАДЬ)∙(СКОРОСТЬ)2

В реальных случаях воздух приобретает не всю скорость v, а некоторую долю ее и площадь А не равна точно сечению крыла, но все же справедливо соотношение

F = (ПОСТОЯННАЯ)∙(НЕКОТОРАЯ ПЛОЩАДЬ)∙(ПЛОТНОСТЬ ВОЗДУХА)∙(v2).

Величина постоянной зависит от геометрической формы крыла, а также интервала скоростей. Фактор формы велик для необтекаемых предметов, таких, как плоская тарелка, поставленная поперек потока воздуха, или даже круглый мяч. Для «обтекаемого» тела, подставляющего ветру такую же площадь, но имеющего правильно сконструированную каплеобразную форму, этот фактор в 20—100 раз меньше, потому что такое тело создает значительно более слабое вихревое движение. Рассмотренное сопротивление, обусловленное остающимися позади вихрями, по своей природе совершенно отлично от создаваемого трением сопротивления при ламинарном течении.

Фиг. 253. Сравнительная величина факторов формы, влияющих на сопротивление воздуха в случае быстрого потока.

Механизм сопротивления, создаваемого внутренним трением

Сила сопротивления, обусловленная внутренним трением при ламинарном течении, создается не в результате появления макроскопического движения среды, а вследствие «уноса» мелких порций количества движения, происходящего при столкновении молекул. Ближайшие к движущемуся предмету молекулы жидкости при столкновении с ним приобретают часть его количества движения и при столкновении с соседними молекулами передают им свое приобретение. Такие молекулы, снующие взад и вперед в беспорядочном движении, ведут себя как мыши, «отщипывая» от медленно движущегося предмета небольшие порции количества движения. Вследствие похищения части количества движения предмет испытывает тормозящую силу

Ft = ПОТЕРЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ЗА ВРЕМЯ t.

Как это сопротивление, обусловленное внутренним трением, зависит от скорости движущегося предмета? Предположим, предмет стал двигаться вдвое быстрее; тогда его количество движения возрастет вдвое. При каждом столкновении молекулы жидкости, вероятно, будут забирать ту же долю от удвоенного количества движения предмета, что и раньше[152]. Поэтому при каждом столкновении они будут уносить вдвое большее количество движения. А частота столкновения остается той же, потому что скорость движения предмета мала по сравнению со скоростями молекул. Таким образом, при удвоенной скорости предмет за то же время теряет удвоенное количество движения. Следовательно, он должен испытывать удвоенное сопротивление, поэтому следует ожидать, что сопротивление будет пропорционально скорости предмета, F ~ v. Опыт подтверждает это для медленного ламинарного течения газа или жидкости.

С другой стороны, при высоких скоростях организованные «банды молекул» вихревого слоя жидкости производят «грабеж» количества движения. В этом случае, как указывалось выше, сопротивление пропорционально v2.

Таким образом, при очень медленном движении сопротивление ламинарного потока пропорционально v (например, при движении мелких капель дождя в облаке или при оседании осадка в пруду), а при быстром движении сопротивление вихревого трения пропорционально v2.

Современные воздушные лайнеры летят так быстро, что даже при наличии обтекаемой конструкции возникает сопротивление, пропорциональное v2. При рассмотрении реального полета надо помнить, что способы управления при различных скоростях различны, и поэтому изменяется фактор формы. Вследствие этого зависимость сопротивления от скорости оказывается еще более сложной, и существует некоторая оптимальная скорость, при которой сила сопротивления минимальна.

Задача 8. Предельная скорость

(Эта задача подготавливает к важному опыту по атомной физике.) Небольшое обтекаемое тело падает в воздухе. Сначала оно движется ускоренно, но затем устанавливается постоянная скорость падения (которую называют предельной скоростью). Проверьте это утверждение с помощью небольшого листка бумаги или игрушечного парашюта.

а) Почему падающее тело не продолжает ускоряться?

б) Когда тело движется с постоянной скоростью, чему равна действующая на него суммарная сила? Что можно сказать о величине силы сопротивления, действующей на тело?

в) Можно ли определить только из наблюдения за падающим телом, обусловлена ли тормозящая сила внутренним трением (F ~ v) или вихревым сопротивлением (F ~ v2)?

г) Предположим, что в результате случайного столкновения с комаром падение предмета несколько замедлилось или несколько ускорилось. Объясните, почему предмет вернется к первоначальной скорости, если сила сопротивления с ростом скорости возрастает (как это происходит в любом из случаев F ~ v или F ~ v2).

д) Предположим, что падающее тело полое; заполняя его, можно увеличить его массу в 4 раза. Как это изменение отразится на его предельной скорости v, 1) если F ~ v? 2) если F ~ v2?

ОПЫТЫ ДЛЯ КАЖДОГО СТУДЕНТА

Опыт 9. Небольшой лист бумаги возьмите обеими руками за один конец так, чтобы этот конец был горизонтален, а другой изгибался под действием собственного веса. Равномерно дуйте над поверхностью горизонтальной части бумаги (фиг. 254).

Наблюдайте за действием струи воздуха и объясните его. По существу здесь в самом простейшем виде проявляется тот же эффект, что и при полете самолета.

Опыт 10. Движение обтекаемого листа бумаги. (Вспомните шутливое замечание в гл. 1, что при проведении опытов с падающими телами вы, вероятно, не обратили внимания на некоторые простейшие из них.)

А. Уроните небольшой лист бумаги и понаблюдайте за его падением (если хотите, сравните его падение с падением скомканного листа).

Б. Придайте листу некоторую обтекаемость, отогнув небольшие полоски вдоль каждого края, чтобы получилось корытце, как на фиг. 255. Наблюдайте за его падением.

Фиг. 255. Корытце из бумаги.

В. Видоизмените опыт Б, складывая из бумаги фигуры различной формы. Вы получите большие возможности для изобретательности и критических размышлений.

Г. На основании проделанных опытов решите, является ли движение воздуха около падающего листа бумаги ламинарным, в котором сопротивление обусловлено внутренним трением (F ~ v), или более быстрым, с вихреобразованием (F ~ v2).

Убедитесь, что вы можете уверенно обосновать свое решение. (Правда, о форме движения воздуха можно догадаться, пустив дым вокруг падающего тела, но надо попытаться получить более строгое доказательство.)

Эффект Бернулли: «Демоны» иди наука?

Хотя конструкторы используют принцип Бернулли при создании летательных аппаратов, а инженеры прибегают к его помощи при конструировании различных приспособлений, он не является жизненно важной частью физической науки. Все же цель этой главы в основном демонстрация не практических применений, а того, как «работает» научная мысль. Начав с парадоксов притягивающей воронки и искривленного полета мяча, каждый из которых, по-видимому, требует для объяснения своего собственного особого «демона», мы пришли к единому принципу, который объясняет эти парадоксы и предсказывает новые.

Сначала чисто «эмпирически» (т. е. прямо из опыта) мы делаем простой вывод: где линии тока гуще, там течение быстрее, а давление меньше. Затем, когда мы размышляем над этим, здравый смысл подсказывает: если происходит переход от медленного течения к быстрому, то жидкость должна ускоряться. Потом мы привлекаем теорию в виде второго закона Ньютона (F = ma), в справедливости которого уверены: «Где есть ускорение, там должна действовать соответствующая сила». Применяя эту теорию к простому случаю, например к жидкости, текущей по неоднородной трубке, мы предсказываем, что при быстром течении давление должно быть меньше. Итак, если закон F = ma является всеобщим, мы должны ожидать эффекта Бернулли как примера его действия. (Поэтому, если бы этот эффект не существовал, нам следовало бы усомниться в общем характере закона F = ma.) Развитие теории с применением закона сохранения энергии и некоторых алгебраических выкладок позволяет найти соотношение между скоростью течения и давлением, которое подтверждается опытом:

1/2 (ПЛОТНОСТЬ ЖИДКОСТИ)∙(СКОРОСТЬ ТЕЧЕНИЯ)2 + (ДАВЛЕНИЕ В ЖИДКОСТИ) = ПОСТОЯННАЯ.

Иными словами, сумма (1/2 dv2 + p) должна иметь одно и то же значение во всех точках вдоль линии тока. Следовательно,

(Если жидкость переходит с одного уровня на другой, надо учесть также изменение потенциальной энергии.)

Тем самым мы свели несколько «демонов», каждый из которых мог объяснить только свой случай, к одному общему механизму, сочетающему закон F = ma и правила геометрии; хотя обе его составные части сами по себе «необъяснимы», они обычны во многих областях науки. Мы сократили число таинственных явлений, сведя все наши примеры к одной тайне, F = ma. Как сказал бы Конант, мы уменьшили «степень эмпиризма» нашего знания о поведении жидкости, продвинув тем самым науку вперед. Принцип, который помогает инженерам строить насосы, измерители расхода жидкости и газа и самолеты, а также проявления внутреннего трения жидкости и газа, с которыми мы еще встретимся при изучении молекул и атомов, теперь представляются разумными частями механики, которую мы строим вне всякой связи с парадоксами.

Эта глава оправдает свое назначение, если она даст вам почувствовать, что «наука создает смысл», что сущность прогресса в науке состоит в упрощении, а не в увеличении сложности.

Задача 9

Какое движение воды, ламинарное или вихревое, вы предпочли бы для мытья чайных стаканов? Что произойдет, если вода имеет другой тип движения?

Задача 10

Две небольшие лодки закреплены посреди быстрой реки с помощью веревок, которые тянутся вверх по течению от лодок к двум якорям. В момент бросания якорей лодки находились на расстоянии нескольких десятков сантиметров одна от другой. Растащит ли течение лодки в стороны или сблизит их? Объясните ответ и дайте рисунок.

Задача 11

На эффекте Бернулли основано движение роторного судна. На этом необычном корабле, который успешно пересек Атлантику, вместо мачт и парусов имелись огромные вертикальные цилиндры, непрерывно вращавшиеся с помощью моторов.

Допустим, что дует постоянный южный ветер, а корабль такой конструкции хочет плыть на восток. Как должны вращаться цилиндры — по часовой стрелке или против часовой стрелки, если смотреть на них сверху? Поясните ответ рисунком.

Задача 12

Придумайте простую иллюстрацию эффектов Бернулли с помощью двух небольших листков бумаги.

Задача 13

Предположим, что постоянный ветер дует вдоль горизонтального плато, поднимаясь у находящейся в конце плато горной гряды (фиг. 256). Над плато летит самолет, пилот которого определяет высоту полета с помощью измерителя давления (барометр). При ночном полете пилот пытается вести самолет на постоянной высоте, достаточной, чтобы можно было перелететь через горы. Объясните, почему при наличии ветра может произойти несчастный случай.

Фиг. 256. К задаче 13.

Задача 14

Наши голосовые связки образованы двумя мышечными полосками с продолговатой щелью между ними, через которую проходит воздух. Подумайте, каким образом можно поддерживать непрерывные колебания голосовых связок при разговоре.

Задача 15

Постоянный ветер дует над океаном, где образовались небольшие гребни и впадины волн (фиг. 257). Опишите, каким образом ветер может увеличить гребки и впадины.

Фиг. 257. К задаче 15.

Задача 16

На фиг. 258 показано устройство расходомера для измерения скорости потока жидкости на химическом заводе (не давления, а скорости ее расхода, например, в литрах в минуту).

Фиг. 258. К задаче 16.

Скорость потока жидкости в трубке ABC определяется с помощью манометра, измеряющего разность давлений между отверстием в трубке А и отверстием в суженной части трубки В. На рисунке манометр представляет собой просто U-образную трубку со ртутью.

а) Объясните, почему манометр показывает скорость потока.

б) Объясните, почему манометр ничего не говорит о давлении жидкости в основной трубке.

в) Путем рассуждения (например, «допустим, скорость потока удвоилась, а распределение линий тока осталось таким же…») найдите, как показания манометра должны быть связаны со скоростью потока. Изменяются ли показания манометра (пропорционально скорости потока, или ее квадрату, или каким-либо другим образом)[153].

Задача 17

Перерисуйте фиг. 234, а для жидкости, текущей вдвое медленнее, чем показано там. Запишите, какие должны произойти изменения.

Задача 18

Перерисуйте фиг. 237, а для жидкости, текущей вдвое медленнее. Запишите, какие должны произойти изменения.