Взаимодействие и разгон
Нейтронные звезды и черные дыры в принципе тоже могут быть гиперскоростными. То есть их может разогнать сверхмассивная черная дыра за счет разрыва двойной. Но это очень экзотический механизм. В солнечной окрестности он, конечно же, не работает. Вокруг нас, если мы посмотрим на обычные звезды, есть интересный класс объектов, которые называют убегающими звездами. Как можно догадаться, они имеют скорость больше, чем их соседи. Больше – это 70 км/с, а иногда 100 км/с. Как они приобрели такие скорости?
Есть, опять-таки, два способа. Первый мы уже обсудили – это взаимодействие с каким-то другим телом и получение дополнительной энергии. Только теперь «другое тело» – это не сверхмассивная черная дыра. Происходит коллективное взаимодействие, например, в плотной молодой звездной ассоциации, и часть звезд теряет энергию, а часть – приобретает и становится убегающими.
Второй способ связан с двойными системами. Если у нас две звезды крутятся вокруг друг друга, одна взрывается (т. е. резко становится легче, а вещество улетает из системы), то вторая звезда становится гравитационно не связанной с ней. Но у нее была какая-то орбитальная скорость, и фактически вся эта орбитальная скорость сохранится. Немножечко, правда, звезда все-таки замедлится, пока будет отлетать от своей полегчавшей соседки, но несильно. Поэтому если до распада двойной орбитальная скорость составляла 100 км/с, то после разрыва системы звезда может улететь со скоростью 70 км/с.
Распад двойной системы после взрыва сверхновой. Улетающая оболочка уносит более половины массы системы. Показано движение центра масс оболочки, нормальной звезды и компактного объекта.
Естественно, нейтронные звезды и черные дыры тоже могут приобретать скорость в таком процессе. Тем более что они и образуются в результате вспышки сверхновой. Это называют «эффектом пращи». Как камень вылетает из пращи – крутили-крутили, а потом бросили, – так и здесь: крутилась удерживаемая силой гравитации звезда или черная дыра, а потом улетела, потому что гравитация резко уменьшилась. Так можно разгонять объекты до больших скоростей – сотни километров в секунду. Особенно нейтронные звезды и черные дыры, поскольку они могут оказываться в очень тесных системах. Понять это довольно легко: если у вас есть две большие обычные звезды, то вы не можете их поместить слишком близко – они сами по себе большие. Радиус каждой из них может быть несколько миллионов километров. А если они эволюционируют и расширяются, то будет еще больше.
А вот если одна из звезд уже превратилась в черную дыру или нейтронную звезду, то такой объект может оказаться гораздо ближе к своей соседке. Тела в двойной системе могут сближаться, например, из-за перетекания вещества. В процессе эволюции система станет более тесной. Звезды будут крутиться друг вокруг друга быстрее, и во время второго взрыва сверхновой звезды (т. е. взрыва второй звезды) компактный объект может оказаться улетающим с очень большой скоростью. Так можно получать даже скорости, превосходящие тысячу километров в секунду. Ситуация, когда возможен столь сильный разгон, должна быть довольно редкой, так как система должна быть очень тесной перед распадом. Но такое в принципе возможно.
Наконец, есть способы разогнаться до больших скоростей, доступные только для нейтронных звезд и черных дыр. Их придумали для того, чтобы объяснить данные наблюдений. Давайте посмотрим, откуда появилась эта задача.