Глава 3 Вход в атом

Вы безучастно и довольно долго рассматриваете магнит на холодильнике. Затем качаете головой и открываете дверцу, чтобы наконец достать молоко, которого вы так сильно хотели, прежде чем магнит обратил ваше внимание на феномен из мира призраков.

Вернувшись к оставленной на столе кружке, вы уже собираетесь влить туда молоко, как вдруг вид лежащего рядом золота заставляет вас остановиться.

Чем именно являются атомы золота, обнаруженные вами ранее, или атомы, шевелящиеся на поверхности магнита? Может быть, они напоминают маленькие круглые шарики? Или кубики? Как именно заряды предпочитают получать виртуальные жемчужины света из электромагнитного поля? И что, черт возьми, я имею в виду, говоря, что все они – выражения некоторых полей?

Как и следовало ожидать, эти вопросы отсылают вас обратно в мини-состояние, и вы оказываетесь плавающим посередине кухни вдали от всех знакомых предметов, с любопытством ожидая ответа, из чего состоит полученный вами атом золота.

Но это не тот самый атом. Скорее, самый маленький атом. Атом, составляющий 74 % всей известной материи Вселенной: водород. Тот самый водород, ядра атомов которого в подобных Солнцу звездах сливаются, создавая более крупные, и побочным продуктом этого слияния является свет.

Говоря откровенно, видно вам не слишком много.

Перед вами точно находится что-то, но вам очень трудно определить, где оно, не говоря уже о том, что это такое. Пристальное разглядывание его мини-глазами не помогает, так что вы решили снова попробовать ощутить его по методике йогов.

Удивительно, но это работает.

Глаза закрыты, но вы можете представить себе картинку.

Что-то наподобие волны, колеблющей окружающее электромагнитное поле… волны, покачивающейся вокруг сферы… полой сферы или, скорее, полого лепестка… и это не совсем волна… но она сферическая, нет, в форме лепестка, пульсирующая, стремительно движущаяся… со скоростью, очень близкой к скорости света, так что мир, кажется, должен быть сильно искажен, не говоря уже об отсчете его времени в сравнению с вашим, но он не сосредоточен в определенном месте… Хорошо, давайте будем откровенны, вы понятия не имеете о том, что воображаете, но вся эта сферическая, в форме лепестка или любой другой форме, стремительно движущаяся[32] вещь действительно переносит электрический заряд. Можно ощутить ее взаимодействие с электромагнитным полем точно таким же образом, как при приближении магнита.

Значит, это и есть атом? Все еще сосредоточенно думая, вы понимаете, что здесь нечто другое… Похороненное глубоко внутри, микроскопическое по сравнению с объемом движущейся волны, но что-то, должно быть, сильное, даже очень сильное, чтобы удерживать ощущаемый вами движущийся заряд от исчезновения.

Вы понимаете, что атом водорода обладает ядром, окруженным движущимся зарядом. Все атомы Вселенной имеют такую структуру: ядра разного размера, окруженные одной или несколькими электрически заряженными волнами.

Ученые назвали такое ядро атомным ядром, а нечеткую, заряженную, покачивающуюся волну – электроном.

И это – сбивающее с толку открытие.

Электрон не имеет ничего общего с воображенной вами крошечной точкой.

Чтобы убедиться в правильности ваших умозаключений, вы оставляете методику йогов в покое и открываете глаза. Совершенно неожиданно покачивающаяся волна исчезает, становясь чем-то другим, гораздо больше напоминающим частицу.

Хорошо.

Электроны, абсолютно идентичные этому, присутствуют в различных количествах во всех атомах Вселенной. Они являются основой всех наших электрических и магнитных устройств, будь то компьютер, стиральная машина, сотовый телефон, электрическая лампочка… и любой вещи. От них зависят все энергетические и коммуникационные средства.

Поэтому вы медленно, очень медленно протягиваете свою крошечную руку вперед, чтобы схватить его и изучить поближе.

Как ни странно, электрон очень трудно поймать. Каждый раз, когда вам удается обнаружить его краем мини-глаза, он начинает двигаться хаотично, как будто сама попытка обнаружить его заставляет электрон изменять свой курс непредсказуемым образом.

Это не игра вашего воображения.

Это реальный феномен. Одно из многих явлений, происходящих в квантовом мире, но не в нашем повседневном мире хрустальных ваз и чашек кофе.

Это – часть фундаментальной неопределенности природы, рассматриваемой с нашей точки зрения.

Вы подробно познакомитесь с тем, что это значит, в шестой части книги, но уже сейчас чувствуете, что происходит что-то сверхъестественное. Нужно поймать этот электрон и заставить его говорить, думаете вы. Точно. Какого бы вы ни были крошечного размера, но вы – чистый разум и можете делать все что угодно. И будь вы прокляты, если какой-то там малюсенький электрон попытается это опровергнуть… хвать! Как только ваш мини-глаз засекает его присутствие, прямо тут, справа от вас, вы быстрее молнии набрасываетесь на него. И вот он здесь, в вашей плотно сжатой правой руке. Электрон шевелится внутри, будто бабочка, практически со скоростью света хлопающая крыльями по ладони. Вы начинаете сжимать пальцы. Электроны – заряженные частицы; они взаимодействуют с другими имеющимися в руке собратьями с помощью виртуальных жемчужин света, вылетающих из электромагнитного поля.

ЭЛЕКТРОНЫ ПРИСУТСТВУЮТ В РАЗЛИЧНЫХ КОЛИЧЕСТВАХ ВО ВСЕХ АТОМАХ ВСЕЛЕННОЙ. ОНИ ЯВЛЯЮТСЯ ОСНОВОЙ ВСЕХ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ УСТРОЙСТВ, БУДЬ ТО КОМПЬЮТЕР, СТИРАЛЬНАЯ МАШИНА, СОТОВЫЙ ТЕЛЕФОН, ЭЛЕКТРИЧЕСКАЯ ЛАМПОЧКА.

Вы продолжаете все сильнее сжимать кулак, желая, чтобы электрон затих в своей крошечной тюрьме, и… внезапно вы его больше не ощущаете. Он исчез.

Вы разжимаете кулак.

Электрона там нет.

Вы абсолютно уверены, что не оставили ни одной крошечной щелки между пальцами, но все же он выскочил. И вы ничего не почувствовали. Он просочился сквозь ладонь, не коснувшись ее.

Он снова вернулся к невидимому ядру атома водорода, откуда вы его забрали.

Возмутительно!

Но как же ему это удалось? Как мог электрон выскользнуть из цепкой хватки, не задев вас? Честно говоря, он прошел сквозь вашу руку. Выпрыгнул. Рекордный прыжок. Квантовый скачок. Нечто ограниченное субатомным миром, не существующее в повседневной жизни на макроуровне кухонь, ваз и самолетов. Или что-то в таком роде.

Вы еще не успели разобраться с электроном, но уже знакомы с одним из его странных свойств: он может прыгать, как никто другой. Феномен, называющийся квантовым скачком или туннельным эффектом, и так сложилось, что не только электроны, но и все частицы, которые вы обнаружите в квантовом мире, способны на такие квантовые скачки или переходы.

Теперь, выяснив этот вопрос, давайте остановимся на секунду, чтобы вместе подумать о терминологии.

Когда ученые открывают что-то новое, необходимо дать ему имя. Для чего-то микроскопического, для квантового мира, они составляют слова-ассоциации, где за прилагательным «квантовый» следует существительное, как правило, взятое из обиходной речи. Так получаются «туннели», «прыжки» или «миры» – легко понятные термины, которые сами по себе означают то же самое, что и в повседневной жизни. Однако наличие слова «квантовый» служит предупреждением. «Квант» автоматически означает наличие чего-то подозрительного. В случае с рукой подозрительность квантового туннелирования заключается в следующем: электроны действительно проделывают туннели сквозь вещи… но никаких туннелей нет.

Квантовые скачки едва ли когда-либо осуществимы для людей, но представьте себе, если бы они были возможны. Вообразите: вы вернулись назад в прошлое, в свое детство, на эту самую кухню. Отец только что попросил вас убрать посуду со стола, но уже поздно, и вы вдруг чувствуете, как все сто километров земной атмосферы упали на ваши хрупкие плечи. Вы чуть слышно бормочете что-то совсем не напоминающее рычание медвежонка. Но ничего не помогает.

Стол с грязной посудой ждет вас.

В отчаянии вы садитесь на пол. И тут начинается. Вы вдруг оказываетесь в столовой, с другой стороны кухонной стены, рядом со столом, и все столовые приборы, тарелки и стаканы начинают проделывать туннели, совершать прыжки и тому подобное сквозь стену прямо на кухню. Это может звучать как сказка или отрывок из книжки про Мэри Поппинс, но, если честно, с этими квантовыми скачками никогда не угадаешь, куда могут запрыгнуть столовые приборы, посуда и стаканы. Так что в конечном итоге они вряд ли окажутся в посудомоечной машине, и отцу придется покупать все заново, потому что вы больше никогда их не найдете.

Звучит странно, не так ли?

Вот что такое квантовое туннелирование. Если перевести квантовые законы в нашу плоскость, то дверей, стен и неприкосновенности частной жизни не существовало бы. К счастью и довольно загадочным образом, они к нам не применимы.

Однако благодаря туннельному эффекту почти все в микромире способно пересечь любой барьер. Каким образом? Принято считать, что частицы могут осуществить это, потому что им позволено черпать энергию из своего квантового поля, моря, в котором они плавают, моря, действительно заполняющего все место в пространстве-времени. Столько энергии, сколько захочется. Мечта всех спортсменов.

Но это не подскажет вам, на что похож электрон, и я предпочел бы быть с вами вполне откровенным: вашей мини-копии, возможно, придется столкнуться здесь с легким разочарованием. Представить себе электрон невозможно из-за того самого квантового поля, которому он принадлежит.

Электромагнитное поле существует повсюду, и каждый отдельный электрон Вселенной не только принадлежит ему, но и абсолютно идентичен любому другому электрону, везде и всегда. Поменять их местами, и Вселенная не заметит. Из-за этого квантового поля, чьим выражением они являются, электроны нельзя описать как макроскопический объект. Они относятся к полю. Они являются его частью, как капля воды принадлежит безбрежному океану или порыв ветра – ночному воздуху, капли или порывы, которые вы не можете выделить в отдельности. До тех пор пока наблюдатель не смотрит, капли и порывы ветра идентичны самому океану или самому ветру. Смешанные с сущностью намного обширнее, чем они сами, они не имеют собственной индивидуальности.

В квантовом мире, когда за ними наблюдают, электроны становятся частицами с заданными свойствами, подобно каплям, взятым из океана, но их свойства не похожи ни на что виденное вами прежде. Они не ведут себя привычным образом или по крайней мере так, как может нами ожидаться, исходя из опыта повседневной жизни.

Даже если знать, где электрон, вам не узнать, как быстро он движется: его скорость становится непредсказуемой. Именно поэтому было так трудно найти электрон внутри атома водорода. Стоило вам его увидеть, как он начинал двигаться хаотично. Вы были не в состоянии следить за ним, и он исчезал из виду.

Аналогичным образом, если знать, сколько энергии имеет электрон, нельзя рассчитать, как долго он собирается сохранять ее.

Энергия и время, местоположение и скорость являются действительно независимыми друг друга понятиями полей квантового мира. Подробнее вы услышите обо всем этом в шестой части, но на данный момент, пока ваша мини-копия впервые путешествует по квантовому миру, вы можете считать мое замечание предупреждением (а возможно, приманкой для некоторых читателей). Вашей уменьшенной копии придется просто воспринимать все так, как вы делали это раньше, будучи маленьким ребенком, открывающим для себя мир: без предубеждений. Местоположение и скорость не могут быть известны одновременно? Хорошо. Так оно и есть. Квантовые законы допускают сверхъестественные прыжки и туннели? Хорошо, пусть так и будет. Объяснение придет со временем, а может, и нет.

Тем не менее все разговоры о квантовом туннельном эффекте звучат для меня полным бредом. Мне рассказывали, как однажды после прочтенной лекции по квантовой физике Эйнштейн сказал студентам: «Если вы меня поняли, значит, я выражался недостаточно ясно». Так что, если это тоже звучит для вас как нонсенс, то все в порядке. Природа не обижается. Она здесь, чтобы мы ее открыли, вот и все. Но действительно ли это реально?

Что ж, некоторые относились к квантовому туннелированию довольно серьезно и пытались найти ему практическое применение. Удивительно, но им это удалось.

Около тридцати лет назад, работая на компанию IBM в Цюрихе, немецкий физик Герд Бинниг и швейцарский физик Генрих Рорер были убеждены, что смогли бы использовать квантовое туннелирование для визуального осмотра любых поверхностей в феноменально малом масштабе. Ученые полагали, что оно позволит им наконец-то увидеть атомы.

Как правило, электрон не покидает свой атом, если не найдется местечка лучше. И обычно, если альтернатива появляется, она должна располагаться довольно близко, в противном случае электрону туда не попасть. Разве только он не использует свою квантовую силу, создав туннель сквозь пустоты и перепрыгнув через препятствия.

С помощью чрезвычайно тонкой и сверхзаточенной острой иглы, подключенной к регистратору измерения тока, Бинниг и Рорер сканировали поверхность материала, не прикасаясь к нему. Находясь довольно далеко от поверхности, они не должны были обнаружить ничего, так как расстояние между ней и иглой слишком велико для амплитуды движения электрона. Но они засекли электрические токи, соотносящиеся с прыжками электрона.[33] Чем ближе игла была к поверхности материала, тем больше обнаруживалось скачков и тем заметнее вырастал электрический ток. Сопоставив эти токи на графике, они получили 3D-изображение материала на атомном уровне с экстраординарными подробностями. Они построили микроскоп, называемый теперь сканирующим туннельным микроскопом, которые смог увидеть уже сами атомы. Его точность поразительна: от 1 до 10 % диаметра атома водорода. Другими словами, если бы у атома водорода имелись ноги, то сканирующий туннельный микроскоп смог бы сосчитать их, а может быть, даже и количество пальцев.

Атомы золота, подобные тем, что вы обнаружили на своей кухне, были сканированы таким же образом несколько десятилетий назад. Сканирующие туннельные микроскопы сегодня используются для получения представления о том, каким образом различные типы атомов переплетаются в окружающей нас материи, а также в самых современных, искусственно созданных материалах. С помощью такого микроскопа инженеры получили возможность управлять отдельными атомами. Квантовое туннелирование оказалось реальным. И оно имеет практическое применение.

За создание такого инструмента Бинниг и Рорер были удостоены в 1986 году Нобелевской премии по физике.[34]

Электроны, подобные тому, что вы пытались поймать, заселяют внешние границы всех атомов Вселенной. И они неуловимы. Но, несмотря на невозможность описать их внешний вид, используя терминологию повседневной речи, ученые научились принимать их странное поведение.

Насколько известно современной науке, электроны невозможно расчленить на какие-либо более мелкие частицы. В отличие от атома их нельзя расщепить, разделить или даже сломать. Они созданы электромагнитным полем, они – его выражение.

За то, что они не являются ничем, кроме себя самих, за то, что они – одно из самых основных, фундаментальных выражений электромагнитного поля, электроны называют фундаментальными частицами.

Быстро исчезающие жемчужины света, появлявшиеся между магнитом и холодильником, напротив, носят название виртуальных частиц. Они – переносчики взаимодействий, существующие только для передачи электромагнитной силы между электрически или магнитно заряженными частицами.

Атомы, будучи созданы из более мелких компонентов (электронов и того, что составляет их ядро), не являются фундаментальными частицами. Они состоят из их большого количества.

Далее, электроны взаимодействуют с остальным миром не только посредством виртуальных фотонов. Они также могут вступать в контакт с реальными фотонами, с реальным светом, обнаруживаемым человеческим глазом. Эта игра материи и света и заставляет нас видеть мир таким, какой он есть.

В настоящее время реальные фотоны, подобно электронам, также понимаются как созданные из ничего фундаментальные выражения электромагнитного поля: они – настоящая рябь невидимого моря, квантовая пульсация, способная вести себя как волны и как частицы.

Как раз такая волна фотонов теперь омывает атом водорода. Чтобы попасть сюда, им пришлось проделать долгий путь. Около миллиона лет они пытались вырываться из расплавленного ядра Солнца на его поверхность, которой достигли примерно восемь с половиной минут назад. Наконец-то свободные и не обремененные материей, они со скоростью света промчались сквозь космическое пространство все 150 миллионов километров, отделяющие поверхность разъяренной звезды от нашей планеты. Из всех мест, куда они могли направиться, эти фотоны в конечном итоге выбрали Землю, достигнув ее атмосферы лишь долю секунды назад, только чтобы зарядиться в ней и подлететь… к окну вашей кухни. С этого момента у них осталось не так много дел. Они прошли сквозь оконное стекло и подлетели к атому водорода.

Ваша мини-копия наблюдает за их беспорядочным движением по кухне, надеясь увидеть момент их прикосновения к атому. Вместо этого все они пролетают сквозь него и разбиваются о стену кухни.

За исключением одного исчезнувшего.

Пропавшего.

Куда он делся?

Вы в удивлении озираетесь вокруг, пока не замечаете, что неуловимый электрон атома водорода движется теперь иначе. Если рассматривать его как окаймляющую ядро волну, то ее гребни сближаются друг с другом.

Как это возможно?

Электрон возбужден.

Он проглотил фотон.

Помните, как мы впервые встретились с этим странным явлением некоторое время назад во второй части, проверяя первый космологический принцип.

Но сейчас происходит что-то еще более интересное: через некоторое время электрон неожиданно выплевывает точно такой же, как исчезнувший, проглоченный фотон, летящий теперь в случайно выбранном направлении.

Поразмыслив мгновение, вы делаете единственно возможный вывод: наиболее известные фундаментальные частицы электромагнитного поля, а именно электроны и фотоны, могут взаимодействовать и взаимодействуют между собой. И эти электроны и фотоны могут превращаться друг в друга.

Подумав еще немного, вы понимаете, что на самом деле всегда знали это: разве вы не чувствуете тепло, купаясь в солнечном свете? Разве, когда вы сидите зимой перед затопленным камином, кожа не нагревается? Кожа, как и вся материя в нашем мире, состоит из атомов, внешние слои которых заполнены электронами. Когда с ними сталкивается исходящий от Солнца свет, атомы кожи и их электроны «ловят» фотоны, превращаясь в возбужденные электроны, начинающие двигаться несколько быстрее, создавая тепло, нравящееся (или нет) вашему телу.

Это такое невероятное открытие, что я еще раз повторюсь: материя и свет могут превращаться и превращаются друг в друга.

Все в нашем мире есть игра материи и света.

Но не только.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК