Глава шестая, в которой появляются протон и нейтрон

ВОДОРОДНЫЕ ЛУЧИ

Для того, чтобы узнать, что находится в орехе, нужно разбить орех. Для того, чтобы узнать, что находится в ядре, нужно разбить ядро. Или, обстреливая альфа-частицами какие-либо атомы, посмотреть, что происходит не со снарядами, а с мишенью.

Если обстрелять, например, атомы водорода, вчетверо более легкие, чем сами альфа-частицы, то при столкновении альфа-частица должна была бы так толкнуть водородный атом, что он должен был пролететь вчетверо дальше, чем она сама.

Резерфорд предложил Марсдену провести такой эксперимент.

И действительно, альфа-частицы отшвыривали водородные атомы, как бита отшвыривает городок.

Но этим опытом Марсден не ограничился. Ему захотелось посмотреть, как будут вести себя другие атомы, тоже легкие, но тяжелей водорода.

Проще всего было обстрелять альфа-частицами просто воздух, состоящий из атомов азота и кислорода. Они примерно в полтора десятка раз тяжелей атомов водорода, значит, и отлетать от удара альфа-частиц должны были не очень далеко.

Марсден был прекрасным экспериментатором. Но тут произошла осечка. Как ни очищал он воздух в приборе от водяных паров, все равно обнаруживались ядра, летящие вчетверо дальше, чем альфа-частицы.

И Марсден выдвинул смелое предположение — эти водородные ядра несутся оттуда же, откуда несутся альфа-лучи — из ядер радия.

Продолжению опытов с "водородными лучами" помешала первая мировая война. Почти всех сотрудников Резерфорда — в том числе и Марсдена — забрали в армию. Но когда война стала подходить к концу, Резерфорд начал планомерную охоту за таинственным водородом. И в одном из опытов заменил воздух чистым азотом. Теперь в приборе было ровно на четверть больше атомов азота, чем в воздухе.

Резерфорд принялся считать вспышки на экране. И когда истекло положенное время, оказалось, что и вспышек стало больше ровно на четверть — двадцать пять лишних на каждую сотню.

Это значило, что водород вылетал из азота!

Это значило, что ядра атомов водорода входят в состав ядер атомов других элементов.

И еще: не значило ли это, что Уильям Праут 100 лет назад верно угадал, из чего состоят атомы?

Но за эти 100 лет люди узнали о природе вещей больше, чем за два тысячелетия, прошедшие со времен Демокрита и Аристотеля. И потому Эрнст Резерфорд, раздумывая о том, что он увидел, в конце концов пришел к выводам, которые Прауту показались бы абсурдом. Касались они устройства атомного ядра.

…Как же устроено атомное ядро, если из него могут вылетать ядра водорода? Ну, хотя бы самое простое после водородного — ядро гелия?

Оно в четыре раза тяжелей — следовательно, в нем четыре водородных ядра. Но зарядов у него не четыре, а всего два. Не значит ли это, что четыре водородных ядра удерживаются вместе двумя электронами, находящимися внутри ядра гелия? В таком случае на два водородных ядра приходился бы один электрон. Но если электрон может удерживать в одном ядре два водородных ядра, то тем легче ему удерживать в ядре одно водородное ядро… И тогда получится удивительное ядро, состоящее из ядра водорода и электрона — ядро, не имеющее заряда. Получится как бы нулевой атом — атом с пулевым зарядом ядра и, следовательно, без электронной оболочки. Он не сможет химически взаимодействовать с другими атомами. Но зато ни одно ядро не оттолкнет его. Идеальный снаряд для обстрела ядер!

Так Резерфорд предсказал нейтрон — правда, еще не названный этим словом.

А самому водородному ядру, составной части всех прочих атомных ядер, Эрнст Резерфорд и английский физик Оливер Лодж дали имя "протон", от греческого "протеос" — "первичный, первоначальный".

БЕРИЛЛИЕВЫЕ ЛУЧИ

Бериллий, тот самый элемент, что поначалу причинил столько беспокойств Менделееву, в дальнейшем ничем особенно не выделялся. При добавлении его к меди получали твердый упругий сплав — бериллиевую бронзу; вот, пожалуй, и все.

И вдруг немецкие физики Вальтер Воте и Ганс Беккер обнаружили бериллиевые лучи? Они обстреливали листок бериллия альфа-частицами, и на экране никаких вспышек не появилось, но золотые листочке электроскопа, стоявшего за экраном, опали. Значит, что-то спокойно проходило через экран. Боте и Беккер попробовали отклонить это "что-то" магнитом. Не вышло.

Бериллиевыми лучами заинтересовались французские физики Фредерик Жолио и его жена Ирен Кюри, дочь Марии и Пьера Кюри. Они проверили сообщение немцев и убедились — так оно и есть: под ударами альфа-частиц бериллий дает мощное излучение без признаков электрического заряда. Они решили подставить под бериллиевые лучи водородную мишень. И сразу же обнаружили за ней поток ядер водорода.

Ирен Кюри и Фредерик Жолио не читали журнала, в котором было напечатано предсказание Резерфорда. И сами не догадались, в чем тут дело.

Но Джеймс Чедвик, который помогал Резерфорду расщеплять ядра азота и не раз обсуждал с ним возможные последствия их алхимического эксперимента, понял, что Боте и Беккер наткнулись на нейтрон. А 27 февраля 1932 года он подтвердил это опытом.

В этот день стала известна вторая составная часть атомного ядра. Протон и нейтрон — вот блоки, из которых природа соорудила атомные ядра; электрон в этом случае был не нужен.

Ядро водорода? Один протон: масса 1, заряд 1.

Ядро гелия? Два протона плюс два нейтрона: масса 4, заряд 2.

Ядро урана? Девяносто два протона плюс сто сорок шесть нейтронов: масса 238, заряд 92.

Теперь, правда, затуманивалось дело с бета-лучами. Как могут вылетать из ядер электроны, если их там нет, а есть лишь протоны и нейтроны?

Впрочем, появление бета-лучей можно было объяснить, предположив, что сами по себе нейтроны способны в определенных условиях превращаться в протон, остающийся в ядре, и электрон, покидающий ядро.

А вот как объяснить, что за сила удерживает в ядре положительно заряженные протоны? Пока считалось, что в ядре находятся протоны и электроны, можно было думать, что отрицательные электроны склеивают положительные протоны электрическими силами. Но если электронного клея в ядрах не существует, то что же тогда противодействует отталкиванию одинаково заряженных протонов, что превращает их в монолит чудовищной прочности?

Это очень трудный вопрос, но мы забрались уже туда, где простых ответов не знает никто.

В самом деле, что происходит, когда притягиваются два разноименных заряда? Что их тянет друг к другу? Или — когда одноименные отталкиваются. Что их оттаскивает?

В учебниках пишут, что притягивание и отталкивание — суть действия электромагнитного поля. Но что такое это поле? Не последний ли потомок последней тонкой материи — эфира?

…Когда в 1923 году шведский король вручал Нобелевскую премию физику Роберту Милликену за многочисленные успехи в изучении природы электричества, Милликен сказал: "Я прошу вас выслушать ответ экспериментатора на основной и часто предлагаемый вопрос: что такое электричество? Ответ этот наивен, но вместе с тем прост и определенен. Экспериментатор констатирует прежде всего, что о последней сущности электричества он не знает ничего".

А другой известный ученый Герман Вейль утверждал, что "…различие между обоими видами электричества (положительным и отрицательным) представляет собой еще более глубокую загадку природы, нежели различие между прошлым и будущим…"

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК